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Exact Solutions for Rectangularly Shielded
Lines by the Carleman- Vekua Method
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Abstract —Exact solutions for the field of the TEM mode of rectangu-
larly shielded round or strip conductors are obtained by solving linear,
singular integral equations. There are no limitations on the dimensions or
the proximity of the conductors to the shield. Here only round conductors
are considered; printed microstrip conductors are analyzed in further
publications. The kernel of the integral equation in such problems is the
Green’s function G of a line source inside the shield, possessing a
logarithmic singularity near the source point. In a series of recent papers
the authors have developed new expansions for G, in which the singular
and certain other terms are extracted in closed form out of G and the
remaining, nonsingular part is then reexpanded into series converging
uniformly everywhere and very rapidly (exponentially) near the source
point. These new expansions for G are particularly suited for the exact
solution of the singular integral equation of round shielded conductors by
the Carleman—Vekua method, otherwise known as the method of regu-
larization by solving the dominant equation. This leads to strongly conver-
gent solutions for the field of the mode even when the conductors are large
or very near the shield. Questions of integrability of nonuniformly conver-
gent series do not arise. Characteristic values of the shielded lines,
evaluated by summing a few terms, have been checked against existing
approximate results and field plots are shown in the case of close proxim-
ity. Due to the exponential convergence of the kernel expansion it is
possible to provide useful, closed-form expressions for the characteristic
impedance of the line. The accuracy of such formulas is shown to be amply
adequate for most practical situations.

I. INTRODUCTION

ECTANGULARLY SHIELDED round conductors,

striplines, and printed microstrips are widely used
guiding structures in the microwave band [1]-[5]: The
literature is extensive; here, we confine ourselves to a few
references that will be needed for comparison later. From
the mathematical standpoint such structures constitute
problems involving boundaries of different shapes and
boundary conditions. In a series of recent papers [6]-[9]
the authors have developed an exact analytical approach
for the treatment of such problems. The practical impor-
tance of this approach, if one wishes to disregard its power
of providing exact analytical results for quantities such as
field-function distributions, is that it is not limited by the
dimensions or the proximity of the conductors relative to
the shield and that, in most practical situations, it provides
very accurate results in closed form for quantities such as
the characteristic impedance of the line. Such results and
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expressions can be very useful in the design of TEM filters
and couplers [3], [4].

In this paper only round conductors of radius d will be
considered, as shown in Figs. 1 and 2. They are completely
shielded by a rectangular a X b shield. Striplines, and,
most important from the practical standpoint, shielded
microstrip lines can also be treated by extensions of the
same general approach [8], [9]; the latter, involving sub-
strates of different dielectric constants, require appropriate
expansions for the relevant Green’s function. Such expan-
sions have also been developed [8].

Crucial to the whole analytical approach is the availabil-
ity of rapidly and uniformly convergent eigenfunction
expansions for the Green’s function G of the configura-
tion. The G function constitutes the kernel of the integral
equation, which is of the Hilbert type for round conduc-
tors and of the Carleman type for strip ones [9]. Its
solution follows the Carleman-Vekua method, otherwise
known as the method of regularization by solving the
dominant equation [10].

Existing expansions for G suffer from two serious de-
fects: they do not converge uniformly in their region of
validity, exhibiting a slow and conditional convergence
near the singular point and, what is worse, they change
expression when the field point moves past the source
point {7]. For such reasons they are unsuited for the
solution of integral equations, in which values of & at the
source point do appear inside the integral.

Another approach based on integral equations should
also be mentioned here. It was developed initially by
Lewin [11] and used by Mittra and Itoh [12] to treat
waveguide problems (Helmholtz instead of Laplace’s equa-
tion) in shielded microstrip configurations. They do not
follow the Carleman—Vekua method to solve the integral
equation, but they too end up with rapidly converging
series solutions. It is not clear how they would face the
problem of proximity. The Carleman-Vekua method used
herein treats initially all terms of the integral equation
other than the singular as terms containing known func-
tions [10]. Using the well-known inversion formmla of
Hilbert (or Carleman), it then transforms the integral
equation into a Fredholm-type nonsingular equation; this
is then solved using the appropriate expansions of G.
There are two main advantages: all integrals involved in
the process can be evaluated exactly by contour integra-
tion and the final solution reflects the same convergence
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Fig. 2. Configuration of two-conductor shielded line.

properties that characterize the expansions of the kernel
function G. Another way of explaining the usefulness of
the Carleman-Vekua method is to consider it as a smooth-
ing procedure for solving an ill-posed problem such as a
first-kind singular integral equation, similar to equation
(23) below.

II. RAPIDLY CONVERGENT GREEN’S FUNCTION
EXPANSION AND THE INTEGRAL EQUATION

All field quantities of the TEM mode in the shielded-line
structures shown in Figs. 1 and 2 can be expressed in
terms of a two-dimensional harmonic Green’s function
G(x, y; x’, y') of a line source at (x’, y’) inside a rectangu-
lar conducting shield; this G function satisfies the boundary
value problem

4%G

a%G
+ it —278(x—x)8(y— y')

ax?

G0, y;x', y)=G(a, y; x', ")
=G(x,0;x",y)=G(x,b;x’,y)=0 (2)

where 8(x) is the delta function. Two new expansions for
G have been developed in [7]. The first, obtained by
extracting the logarithmic and certain other simple
harmonic terms out of G and reexpanding its remaining
nonsingular part, contains four series S,(x, y; x’, ") (j=
1,2,3,4) converging uniformly over the whole region 0 < x
<a, 0<y<b and exponentially near the source point
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(x’, ). This new expansion is

G(x,y;x',y")

1
-— In[(x=x)+(y—y)] +S(x, y; x', ')

— (-2 (- )]
+1/(2ab){xyIn[(a = x)+(b - y')’]
+(a—x)y1n[x’2+(b—y’)2]
+x(b~y)ln[(a ——x’)2+ y’2]

+(a—x)(b—y)n(x?+ y’2)}

(3)

4
+ 2 8(x, y;x,¥)

j=1
where
) (Mvrx . May
o SN )smh( )
’ 4 a a
Si(x, ;% y)=— L b
M=1 Mwsinh( )
a
Mnx' M=
-{2775111( )exp -——(b-y)
a a

+d(n)) )

. 4 sant
zl=——;(b—y —ix’)

So(x, y; %', y) =S1(x,b~y; x", b—y’)

T I4 san?
= a(y ix’)
L Mayy Mamx
. sm( p )smh( 5 )
Sy(x,p;5x,y) == X1 e
M=1 Mﬂsinh( b )

Sa(x, y3x',y) = Sy(a—x, y;a—=x', y) (7
2am =2 (x' =)
dy(z) =Re{e™[E(Mz— iMn)— E,(Mz)]
+e M [E\(— Mz—iMn)—E,(—Mz)]}

(8)

the bar indicating the complex conjugate. E,(z) is the
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exponential integral function:

E(z) =m= —y—Inz+ Ein(z)

—f ———dt —y—~Inz- Z (—I;%ITZ— 9)
n=1 :
argz <, v =Euler’s constant = 0.577215665 - - -
e’ 1 2t 3 3
IEZ‘llﬁio)“‘ (1—;4—;—;2‘4""' , |argz|<_7r/2.
(10)

Various approximations (asymptotic, continuous fraction,
etc.) for E,;(z) and for real or complex z, as well as
differentiation and integration formulas and useful recur-
sive relations, can be found in [13].

When the field point (x, y) approaches the source point
(x’, y") the behavior of G, as given in (3), is well described
by its dominant logarithmic term. The series expansions S,
(j=1,2,3,4) converge rapidly, in general, in the neighbor-
hood of (x’, y”). This can be deduced from the behavior of
their general term as M — oco. Thus, from (8) we first
obtain [7]

dy(2) = s Re| - (-

M-

} +0(1/M?)
(11)

and the absolute value of the general term of, say, S; is
less than

_aexp[-%_x e

Mz }
M

2
= exp[——[;—(a——x)

T4
|3|

as M — co. Similar relations can be found for Sy, S,, S4.

The first part decays exponentially with M and, in
addition, varies as 1/M. When both x and x’ are very
near a, the exponential decay weakens and this, as dis-
cussed in [7], is due to the influence of the image line
source at x” = 2a — x’ with respect to the boundary x = a.
If another logarithmic term, corresponding to this source,
is extracted out of G, another expression for G is obtained
with a series part converging rapidly even for x =x’= a.
This second expression for G is given below, in (12)—(18),
and proves very useful when the inner conductor is placed
very near the walls x=0 or x=a, or, in case of two
charged conductors, very near each other along the line
y=B8B.

The second part of the general term of S; varies at least
as 1/M? and decays exponentially unless x = a. Even for
x = a the convergence is uniform, of the other 1/M3. The
convergence of this second part fails only when z; or
z,— im approaches zero, ie., when x'=a and y'=0 or
y’=b. In other words, when the source point (x’, y') is
very near one of the two shield corners on the right. This
situation may be remedied by extracting out of G three

(__ )M(Z3 'ﬁ'|) :|+0(1/M)l
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additional logarithmic terms corresponding to the image
sources around the 90° corner [7]. With round conductors
of nonvanishing radius, this situation does not become
critical.

The second expression for G, in which two more loga-
rithmic terms corresponding to image sources at x'' =

2a—x" and x” = —x' (ie., with respect to the walls

x = a and x = 0) are extracted, is
1
G(x, 3%, y) = = [(x=x)"+ (- )]
1
+Eln[(x+x’—2a)2+(y—y')2]

1 e 2
+51n[(x+x’) +(y—y’)]

1 N,
- {(a- )b )
-ln[(2a——x’)2+ y’z]
+x(b— y)ln[(a +x’)2+ y’2]
+(a —x)yln[l(Za - x’)2+(b— y’)2]

+xyln[(a +x")2+(b— y’)Z]}

4
+ Y, SXx, y;3 X, y")

j=1

[ Max)\ | My
sin ( ) sinh ( )
a a

(12)

o0

SAx, y;x',y) =Y,

Mab
M=1 Mvrsimh( )
a
[ Max’
~{DM(w1)—27rs1n( )

o] -2 (0= )] (13)

Sy (x, y3x', ) =87 (x, b= y; ', b~ y’) (14)
C(Mmy | Mmx
. sm(—b——)smh( 5 )
S)(x, ;% y)= X Ve
M=1 Mqrsinh( 5 )

.{dM(w3)+21rsin(MZy,)
~exp[— ?(a ; x')]}

SHx, y;x',y") =S (a—x,y;a

(15)

—x',y) (16)
aw K

w1=;(—b+y'+ix’) w2=—(;(—y’+ix')

(17)

w ™
w3=z(—a—x’+iy’) w4=z(—2a+x’+iy’)

Dy (w) = —dp(w)+dp(w)+dp (W +2mi). (18)
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From the definition (18) for D,,(w) and (11), we now get

(»‘v+i27r)2 o (W +im)?
M2 | %+ i2n* % + im|*

Dy (w) ~

M- o0

_1)
+0(1/M3) (19)

and the absolute value of the general term of S; is less
than

M

2 5 ) 2 Mr
— exp ——( a—x+x')|+ M3exp —T(a—x)

M
M( 12 i'n')
[I w7 |“J

The first part converges exponentially for all x, x’ (even
for x = x’= a). In addition, since both w; = (7/b}(—a —
x'+iy")y and wy,—im=(7w/b)—a—x"+i(y'—b)] never
vanish, the second part varies at least as 1/M> (even at
x = a) and its convergence does not fail at any of the four
corners x’=0,a; y’'=0,b. This may be contrasted with
the behavior of S; near such points, discussed earlier.
Similar remarks hold for S, and S2. The series S;, S_ and
S,, SY suffer only near the walls y = y’=b and y =y’ =0,
respectively, and this behavior also may be corrected by
extracting out of G further logarithmic source terms at
y’"=2b-y" and y” =~ y’. This is not necessary here,
since proximity to the walls x =0, g only will be consid-
ered.

The expansions (3) and (12) are very appropriate for the
solution of integral equations having G as their kernel on
the basis of the Carleman-Vekua method [10]. For round
conductors, Figs. 1 and 2, the integral equation is of
the Hilbert type. For strip ones the equation is of the
Carleman type and can be further extended to the case of
printed microstrip lines [8], [9]. The formulation in terms
of integral equations is explained in [1]-[3], although the
ensuing treatment is strictly numerical or approximate.
The problem of close proximity of the conductors to the
shield walls and the difficulties it creates are also discussed
in [1] and [2]. It will be seen in the following that this
problem is faced head on here and, by strictly analytical
methods, answers are provided to any required degree of
accuracy. Critical in this approach is the proper expan-
sions (3) and, in particular, (12) for G. Extraction of the
image term to improve the convergence of the G function
has recently been used in scattering problems as well [14].

We start by formulating an integral equation for the
single round conductor of Fig. 1. Two-conductor config-
urations will be considered later, since they constitute
rather simple extensions of the main problem of Fig. 1.
The basic unknown function is the surface charge distribu-
tion o(p) (C/m?), for 0 < ¢ < 2, on the round conductor
surface of radius d and center (A, B) inside the shield
a X b. All TEM field quantities can be evaluated by well-
known integrals over this (charge distribution) function.

0(1/M)‘.

Thus, the electrostatic potential function and the field at-
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any point (x, y) or (r,p) (around the center of the con-
ductor) are

Y(x,y)=v(r,9)

d 27
=—~"f0 o(¢)G(x, y;x', y")de’  (20)
0

2e
E(x,y)=E(r.9) = 4 (21)
x=A+rcose y=B+rsing (22)
x'=A+dcosg’ y'=B+dsing'.

If the potential of the inner conductor is ¥(d, @)=V, an
integral equation for o(¢) is obtained from (20) by letting
r =d [10}, [15]:

27,

27
V=f0 o(¢')G(A+dcosg, B+dsing;

A+dcosg’,B+dsing’)dg’. (23)

With r=d one gets, from (22), (x —x)?+(y—y)’*=
4d? sin® (¢’ — ¢)/2) and substituting from (3):

2meV 20 2
— —in(2d) ["o(¢) do'+ [ "o(9)5 (9. ¢) dy
0 0

' —
sin (

where S’ is the value of S when both source and field
points fall on the conductor surface:

- /0 *"5(¢')In q’) }dqo’ (24)

S'(p,¢')=S(A+dcosg, B+ dsing;
A+dcosg’, B+dsing’).

(25)

Equation (24), a singular integral equation with logarith-
mic kernel, will be transformed to a more conventional
type by considering o(p) as the derivative of a new
unknown function W(¢) [10], [15]:

o(p) =W{(g)=dW(p)/de. (26)

Substitution in the dominant (logarithmic) term of (24)
only and integration by parts leads, finally, to

2meV

+2mo,In

. (p 2 2 ’ ’ '4
2dsm5‘—f o(9)S (@, ¢) do
0

= %/ZWW(tpl)cot( id —qn) de’ (27)

—[W(zw) w(O)] = f “o(¢)dy. (28)

III. SOLUTION OF THE INTEGRAL EQUATION BY THE

CARLEMAN—VEKUA METHOD

One may now recognize (27) as a Hilbert, principal-value,
singular integral equation of the first kind [10], [15]. A
necessary and sufficient condition for its solution requires
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further [15, p. 190} that

| 2meV
e

+ 270, In

. 9
) A
dsm2'

- [S (o 9)ole) d | dw =0 @9

whereupon, by Hilbert’s inversion formulas, one obtains
1 2mesV [/
—_— f 2”[ 0 +27T00 E )

5
2772 A d sin
(P)d0+1< (30)

Ind +1n

W(p)=-

- j(;zno(qa')S’(H,(p’) d(p’]'cot( o-

with K some constant, whose value is not required, since
we need only the function ¢(¢). Using the results [10, pp.

79-80]:
27 60—
[
0

—q)d0=7r(fn—(p)

®a0=0

(31)

2sin —|cot

2

/:ﬂln

one gets

W(o) == on(n~e)+ 53 [ [7o(9)56.9)

ot — dgde’'+ K. (32)
At this point one may observe that with S'(¢, ¢") =0, i.e.,
G=—-1In[(x—x)2+(y— y)?], (32) yields the correct
solution for the unshielded conductor: W(¢) = —oy(7 —
@)+ K, o(@)=o0,=constant. In this case (29) provides
the correct relation between o, and V if the radius 7,
where {/(r,) =0, is taken into account.

Expanding now ¢(¢) and W(¢) into the Fourier series

(33)

v o)
o(p)=0,+ 3, (a,cosneg+b,sinng)

n=1

i |
W(p)=Wy+op+ Y. —(a,sinng—b,cosng) (34)
n=1 n

substituting them into (32), making use of the ortho-
gonal properties of the sinme, cosme (m=0,1,2,::-)
functions in combination with the basic relations [10,
pp- 79-80]

2a 0_(P .
f cos mg cot do = 2asinméb
0
(m=0,1,2,---) (35)
27, -9
/ sin me cot deo=—2mcosmi
0

(m=1,2,---) (36)
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and performing first the integration with respect to ¢ from
¢ =0 to 27, one gets

form=0: Wy=—oym + K
bm
- 1 2| sin mé
= o e ! m )
for m=1,2, ' a, =3 f;/[cosm0
m

[>o]

-S'(8,¢") {00 + 3. (a,cosng’+b,sin nq)’)] dodye’. (37)
n=1

The integrations involved in (37) are carried out in Ap-

pendix 1. The end result is a system of 2m homogeneous

linear equations (m =1,2,- - -, c0) for the 2m + 1 unknown

expansion coefficients o,, a,,, b,, having the form

m>~m

b,

— =Ko+ Z (Ka,+ Kib,)  (38a)
a,,

- Z = 0000 + Z (K:nacnan + Krcnsnbn) (38b)

where the K27 (p,qg=c,s or s,c) are defined below. The
required additional nonhomogenous linear equation is pro-
vided by substituting (33) into (29). The end result relates
the coefficients o, a,, and b, to ¥ and has the form

4e

Ind = Ko, + E (K&a,+ KEb,). (39)

n=1

To get this equation use was made of the integrals [16,
p. 584]

fl In (sinmx ) cos (2n7x ) dx
0

= 2/1/2111 (sinmx ) cos (2nmx) dx
0

~In2, n=0
_/ 1
C— a>0 (40a)
2
27 .9
f In 2dsm—2—|d<p=2'rrlnd. (40b)
0

S’'(p, ¢’) is defined in (25) and (3)-(9) or (12)-(18). It is
important to notice that its dependence on ¢ and ¢’
appears in a separated form and facilitates greatly the 6
and ¢’ integrations in (37) and the ¢, ¢’ integrations in
(29). Thus, two types of integrals arise from (37):

I(ﬁ, m; (p’) =/(;2W(Cf)sm0)S’(0.(p’) dé

sin m@
(m=0.1,2.---) (41)
P O [ cosng’ ,
A(5omse) = ["st000( G100 o
(n=0,1,2,---). (42)
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The specific integrals to be evaluated (see Appendix I) are
classified as follows:

L(§,mi4, B)

27 cos ml .
=f (Sinma)(A+dcosﬁ)(B+dsm0)a’0 (43)

Iz(g,m|M; a,,B,a)

_ /02"(°F’S’"” )sin[Mw(a+8cosB)]

sin mé
-sinh [ M@ (B8 + 8sinf)] db (44)
Jl(avﬁlnyg)
1 r2q N2 Y
—5/(; ln[(a—dcosq)) +(,B—dsm<p)]
cosng’ ,
(Soont’) o (45)

L Min, §)
Qar Ma
=/ sin[—(A+dcos<p’)]
0 a
Mo . Alfcosng’\ |
-exp[——;—(b-—B—dsmq))](sinmp, do
(46)

L(Min, §)
2ar M
=/ sin[———(A-chosq)’)}
0 a
(2

M B+ dsine’
-exp —7( + dsing’) sinng

T(Min, §)

27 Ma ]
=f sin[——(B+dsian’)
0 b ]

M ’
-exp[—— T(a—A——dcomp’)](c.osn(p )dq;’

sin ng’
(48)
I5(Mn, §)
27 Ma
=f sin[——(B+dsin(p’)]
0 b
Mn ~|{cosng’} |
-exp{——b—(A+dcosq>)](Sinmp,)d<p
(49)

J5+1(M|n,§)
= ["{e

+ e—MZJ[El(— Mz, - iMn)— E,(- Mz,)]}

cosng’ do’
sin ng’ ¢

Mz ~ 1M7r) El(sz)]

(50)
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with j=1.2,3,4 and
zl————b B-— ds1n<p—z(A+dcosq>)]
a

b—B
=ZT£( ‘"P+ +1 ) (51a)
a d
a
———[B+dsmcp—z(A+dcos<p)]
a
- ﬁ( "P+—+z—) (51b)
a
z,= b [a—4- dcosq’ —i( B+ dsing’)]
ad a—A B
=— |9 — +i— 51c
b(e - zd) (s1c)
T .
z4———~;[A+dcosq>’—i(B+dsmq>’)]
ad A B
=7 — —j— 51d
b(e : zd) (514)

In (44) the restriction 0 < 8 <|a}, | 8| holds among these
three parameters. Also, in (45), 0 <d < [a® + 82]'/2 Based
on the expression (3) for G, the definition of K29 in terms
of these integrals is the following:

1
KEs=——[1(p. m4, B)(a~ 4,5~ Bln,q)

—Ii(p,mA—a,B)J,(—A,b—B|n,q)
~Ii(p,ml4,B—b)J,(a—A,— Bln.q)
+L(p,mAd—a,B=b)J(~ 4,~ Bn,q)]
( A B d

psmM; —, —, ~
a a a

Mzb
-

A B—-b d
Iz(p,m|M a’ a ’a)
Mwb)

a

) [271,(M|n, q)

M=1 Ma3 sinh(

+ReJ(M|n,q)] -

M773sinh(
[2a1,(M|n, q)+ReJ;(M|n, q)]
A B d)

bbb
M'n'a)

12(p, m|iM; —

M773sinh(
(21, (Min, q) + Redy(Min, )]
p M A-a B d
2(psm|l ) b s b ) b)
+

Mma
Mvr3sinh( )

[27J5(Mn, )+ ReJo(M|n, q)]

=0,1,2,---. (52)

(p.g=c,s0rs,c), m,n



FIKIORIS AND TSALAMENGAS: EXACT SOLUTIONS FOR SHIELDED LINES

Obviously K§2 = K25 = 0. As observed in Appendix I, the
series over M in (52) converge at least exponentially with
M, unless the inner conductor is placed very near the
shielding walls. If (12) instead of (3) is used for G, another
expression results for K29 in terms of the same I and J
integrals and the integrals P24 defined later on in (68) and
(A39). This other expression for K22 more appropriate
when the conductor is very close to the walls x =0, a, is
given in Appendix IL

IV. EVALUATION OF THE FIELD

At any point (x, y) inside'the shield the potential ¢ (x, y)
and the field E(x, y) are evaluated from (20)—(21). Owing
to the separated dependence of G on x, y and x’, y’ the
integrals over ¢’ are exactly the J’s, for j =1 to 9, defined
in (45)—(51). The results are

§(xy) = {ooD(x,yno,c)

2me,

+ i [a,D(x, yln,c)+ an(x,yln,s)]}

n=1 (53)
D(x,yln,g)=J1(x—A,y—B|n,§) X

— %[xyfl(a —A,b— B|n, g)

+(a~x)le(—A,b—B|n,§')
+x(b—y)h(a—4, ~ Bln, )

+(a—x)(b—y)-’1(—A’_B‘n’g)]

[ Max\ | May

s1n( )smh( )
a a

Mwb)

a

+

S8

1 Mwsinh(
[2m(in, §)+ Redi( Min, )]

Mzy Ma ]
sin( )sinh —(b—y)
a a |

+
BINeE

Mnb
1 Mz sinh(——-——)
a

[2mi(Min, £)+Redy( Min, €]

. [ M=y b Max
s1n( 5 )sm( b )

M'na)

+

S8

1 Mor sinh (

-[2wJ4(M|n,§)+RcJ8(M|n,g)]
sin(Mﬂy)sinh[yl(a—x)]
r
= Mqrsmh( b )
.[2w15(M|n,§)+ReJ9(M|n,g)],
n=0,1,2,---. (54)
Obviously D(x, y|0,s) = 0. :

+
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For the field E(x, y)=—v{(x, y), the partial deriva-
tives d/dx, d /3y are very simply obtained from (54) for
all terms apart from the first, for which, after referring to
definitions (A5)-(A7), we have, for n=1,2,---,

d0,(x~ 4.y~ Bn, g)/ax
o[ e o e
(55)

()Jl(x—-A,y—B|n,§)/¢9y

S (PR B
(56)

d - B
222 (s)

O T DO Ay

For n=0

a/9 B
[aiaﬂfl(x —4,y=Bl0,c) = 2ww2[’y‘ _;}]/dz. (s8)

V. Two-CoNDUCTOR CONFIGURATIONS

Such configurations with arbitrary conductor radii and
positions lead to a system of integral equations for ¢,(¢,)
and o,(9,). More practical ones consist of conductors of
the same radius d, symmetrically placed with respect to
the midplane x = a /2, as shown in Fig. 2. They are raised
to potentials ¥ and Q¥, with @ =1 implying equal cur-
rents and charges, Q = —1 opposite ones, and Q =0 the
absence of L,, i.e., the one-conductor configuration of Fig.
1. Because of the symmetry

0(¢) =Qo(7—¢);  o(¢) =dW(e)/de’ (59)

the potential {(x, y) at any point (x, y) exterior to the
conductors is

¥(x,y)

- ( 2;’){—% “o,(9)

‘n[(x—4—dcos¢’)’+(y ~ B~ dsing)’] dg’

+ fozﬂal(tp')s(x, y; A+dcosg’, B+ dsing’) do’

Q 2w
o

27
M 7 2” /7
+(y— B—dsing")| dg +Qf0 oy(7~ ¢")

(7= (p”)ln[(x —at+A- a'cosqa”)2

-8(x,y;a— A+dcosg”, B+ dsing”) d(p"}.

(60)

Letting (x, y) fall on the surface of L,,i.e,, x = A+ dcos g,
y = B+ dsin ¢, we obtain a singular integral equation with
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logarithmic kernel for o,(¢") or a Hilbert-type one for
W(g"). The latter is

2me V.

d

+2mo,In

. (p 2” ’ 4 ’ ’
2dsm51—f 0,(¢)S (9, 9") do
0
2 ’ ’” 1
+f0 Qo (7 — ¢ )InR(9,9") dy
2
_-/0 Qo,(7—¢")8"(9,9") dg”

’

@

1 27
=5f0 W((p)cot( )d(p (61)
and reduces to (27) for Q=0. o, is defined in (28),
S’(p, @) in (25), while
R(p,9") = [(2A —a+dcosp—dcosg”)’

11/2 (62)

+d*(sing —sing”)’
S"(p,9”)=S(A+dcosp, B+ dsing;

a—A+dcosg”, B+dsing”). (63)
The necessary and sufficient condition for the solution of
(61) now takes the form

2n| 2me V.
ik

+ Q'/(;zﬂol('n' —¢")In Rdg”

+270o,1n

. (p 2 7 ’ 7 4
2dsm5‘—f o, (¢)S(9.9) de
0

—ofe(n-9)S (.0 v dp=0 (64

and Hilbert’s inversion formula, along with (31), leads to
1 2ar 2ar , ,
W) ==am=0)+ 55 [7] [Toul9)5 (6.9 do

20
=0 [To(m = 9")In R(8,¢") dy”

2a
+0 Vo7~ )5"(0.9") dqw]

0 —
-cot(—?) de. (65)
2
Using the expansions (33), (34) and the formulas (35), (36),
we get

b,

1 2n f2nf sin ml
m _ ’ ’
ap wzfo -/0 (cosm&){s(g’(p)

m

[ee]
. [00 + Y (a,cosng’+ b, sin nq)’)]

n=1

+Q[S”(W)—lnR(e,qo’)][ao+ > (-

n=1

(an cosn(p’—b,,sinnq%)}} didy’. (66)

TABLE I
2d/b a/b [ this WOrkl 5 (o) from cristal
0.6 2.0 | aa.81| 4417 1.
0.4 1.9 | 68.86| 63.74 68.7
0.2 1.7 | 109.94 | 109.91 109.91

0=0,4=a/2, B=b/2.

Equations (38a), (38b), and (39) follow in identical form.
The only change occurs in the definition (54) for K29,
which corresponds to the case @ =0. For Q=1 or —1 we
have

Kri(Q) = Kni+o(-1)"s (Lri - Ph

1
S=1_,

where L2? follows from K729 in (52) if A is replaced by
a— A in all the J integrals (depending on #n), while the I
integrals (depending on m) remain unchanged. All this is
based on expansion (3). Also

pra_ 1 fzwfh cosme; p=c
e atly Jo \sinme; p=s
cosng”’; g
sinng”; g

(67)
forg=-c
forg=s

-lnR((p,(p")( =§) dedg”. (68)
This double integral is also evaluated in Appendix 1.

Finally, ¥ (x, y) and E(x, y) at any point (x, y) follow
from (60), which ends up again in the form (53) with the
function D(x, y|n,j) replaced now by D(x, y|n,§) +
o(— 1)"( ﬁi)H(x, yln, j), where H follows from D in (54)
if A is replaced everywhere by a — A. The partial deriva-
tives d/dx, d/dy for the field are again very simple to
obtain; for the first term J;, of H we use (55)—(58) with 4
replaced by a — 4.

VI. NUMERICAL RESULTS AND COMPARISONS

In Table I we compare numerical results for the char-
acteristic impedance Z,=1/cC = \/;E V/(2mda,) in ohms
(c=1/ype is the velocity of light and C=gq/V=
2wda,/V is the capacitance per unit length) of one-con-
ductor configurations (Q =0), with A=a/2, B=b/2,
obtained by Cristal [3] and our method. Like ours, Cristal’s
results are not limited to small-diameter center conductors
and were obtained by solving numerically integral equa-
tions. His matrix size, 40X 40, should be compared with
ours M X M=1X1,3X3,5X5, where M=2m+1 is the
truncation number for the unknowns o, a,,, b,,. Our re-
sults settle very rapidly to their final values for small M
owing to the strong convergence of the (kernel) Green’s
function expansion. A table of the successive values of
gy, a,,, b,,, as m increases, is given later on. The agreement
with Cristal’s results [3] is excellent. The fact that our
results do not differ for M =1 and M =3 is due to the
symmetry of the configuration (4 =a /2, B=b/2), which
implies a; = b, = 0.
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TABLE 11
2d/b|  s/b* ChisEo]m/MrDemgtf g lLev = éhislworik;:*:;;:
.354) .176 3.9142 7.5347 3.9153 7.5528 3.9132 7‘:‘34’9‘4‘
.400} .226 4.5093 7.5347 4.5080 7——;4-(;4 4. 5(—‘-4‘3ﬁ“7v.—57f‘»8 i
436} .280 5.0281 7.5;47 5.032 7.5561 5 0;37;’77.75463
.462| .338 5.4731 7.5347 5.4718 7.53}1 A:}}AE;W{.SYH
g2 308 | 5.6497 | 7.5347 | 5.8446 | 75339 | 5.8455] 7 5339
.498| .462 6. 1648‘ 7.5347 6.1721 7 .‘;43—6 7] _6-.—1-72—1“ “7—.-5451 |
510 .528 | 6.4257 | 7.5347 | 6.4380 | 7.5514 | 6.4399| 7.5508
518 .596 | 6.6404 | 7.5347 | 6.6424 | 7.5371 | 6.6421| 7.5366
534 806 | 7.0727 | 7.5347 | 7.010 | 7.5350 | 7.0721) 7.5361
.54411.168 7.3855 7.5347 7.3806 7.5285 7.3819 7.757370777
.400} .080 4.1646 11.0783 4,1553 11.2882 4.1651 11.2737717 N
.400{ .120 4.2631 9.4595 4.2626 9‘53-1-7 4.2634 9.‘5‘1i8““
.400| .160 4.3578 8.4935 4.3516 8 5419 4.3579 8.515’2"“
00| 200 | 4.4483 | 7.8478 | 4.648 | 7.8852 | 4.4481| 7.8584
00| .200 | 4.5340 | 7.3863 | 4.5358 | 7.3982 | 4.5337] 7.3917 |
.400] .400 4,8273 6.3903 4.8263 6.3914 4.8265 6.390’3 N
400| 600 | 5.0826 | 5.8862 | 5.0819 | s.s38 | 5.0ms| 5 sse |
.400| .760 5.2134 5.6949 5.2130 5.6946 5.2128(°5.6940

*s=2A—-d)—a.
**q/b=120, M =5-9.

In Table II we compare results for two-conductor con-
figurations, for both Q= —1 and Q =1, with those of
Levy and Chisholm/McDermott [4]. They refer to the

normalized capacitance C/e, and open guides in the x

direction (a/b=00). We approximated this sitvation by
using a /b = 20 to obtain our results. The parameter s in
[4] is the shortest approach between the conductors, equiv-
alent to s =2(A4—d)— a in our case. Levy’s results were
obtained by a combination of conformal transformation
and numerical techniques. OQurs were based on matrix sizes
between 5X 5 and 9X9. The agreement is again excellent.
This fact justifies providing a single-term formula (for
m=0 or M=1) for the first coefficient o, of o(gp), on
which the evaluation of C or Z, is based. For conductors
not too large or proximities not too' close, either to the
shield or between them, the following simple formula,
obtained from (39) and (67), can be useful in TEM filter or
coupler design (for Q =0, +1).

e,V 1
T T4 Kg(0)-4mnd
deV 1

i Ka+o(lg—pg) —ama &

Another check on our formulas is provided by observing
that the case of Fig. 2 for Q = —1 is equivalent to the case
of Fig. 1 with a reduced to a /2 (perfectly conducting wall
at x =a/2). In all cases with Q= —1 in an a X b shield,
we obtained numerical results identical with those having
Q=0 in an (a/2)x b shield. Observe that the function
R(qp,¢”)is 0 for @ =0.

Finally, based on the formulas (53) to (58), nine
equipotential lines ¢ =0.9—0.8— - -+ —0.1, between ¢ =1
=V on the conductor and ¥ = 0 on the shield were plotted
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Fig. 3. Equipotential and field lines of shielded single-conductor line.

in Fig. 3, along with field lines starting from ¢ = 0° every
30° around the conductor. The configuration corresponds
to a=30, b=20, A=22, B=5, d = 3. The equipotentials
were plotted by varying ¢ by steps of 2° from ¢ =0° to
¢ = 360°. The algorithms for these evaluations, making use
of the methods of bisection and Newton—Raphson for
determining roots of complicated equations related to
(53)—(58), cannot be described herein for lack of space. As
expected, the field between the conductor and the shield in
their nearest approach, i.e, for x=22(=A4) and 0< y <
2(=B—d) is almost uniform (almost straight and
equispaced equipotential lines). In Table III below the
values of o,=4ay,a,,b, in 10712 C/m* are given for
successive values of matrix size M =2m +1, for the con-
figuration of Fig. 3, showing the quick settlement of their
values with increasing M. For m =1 (M = 3) the value of
6, =3.061 (or C,Z;) is 0.3 percent off the correct one
o, = 3.0738. Values of o(¢p) or the field, however, require
use of more a,,, b,. For the plots of Fig. 3, for example,
m = 8 (M =17) were used. In this particular case the use of
either (3), (52) or (12), (A42) yields the same a,,, b, with
comparable accuracy. When the conductor approaches
either of the walls x = 0 or x = a, the second set, i.c., (12),
(A42), (A49), is more advantageous, particularly when
¥(x, y) or E(x,y) is evaluated in the region of close
proximity. The situation is illustrated in Figs. 4 and 5, in
which the equipotentials y =0.9—0.8— --- 0.1 are plotted
in the region of close proximity of the conductor to the
wall x = a. For both figures, a =30, b=20, B=35, d=3,
while 4 =26 (minimum distance -of conductor from wall
a—A—d=1)in Fig. 4and 4=265(a— A—d=0.5)in
Fig. 5. In Fig. 4(a) and with m=15 (M =31), the
equipotentials ¢ =0.2—0.1 (very near x =a), when
evaluated on the basis of (3), (52), (54), instead of turning
out smooth, almost straight lines, they tend to oscillate,
indicating a lack of accuracy in' their computation. This
disappears either by using more terms, m =20, or by
making the evaluation on the basis of (12), (A42), (A49)
with fewer terms, m =15 or even less, as shown in Fig.
4(b). This result points to the superiority of (12), (A42),
(A49) in such situations and can be explained as follows:
when x is very near a the series S;(x, y; x’, ") in (4),
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(a)

(b)

Fig. 4. Equipotential lines in the region of close proximity between
conductor and shielding wall (a — 4 — d =1). (a) On the basis of (3)
and (54) with m =15, (b) On the basis of (3), (54) with m =20 or on
the basis of (12) and (A49) with m =15.

(3) or S{(x, y; x', y") in (15), (12) lose their exponential
decay with M, arising from the fraction sinh(Mmx/b)/
sinh(Mna /b), and the same thing happens with the corre-
sponding terms in (56) and (A49) for D(x, yln, j), when
evaluating ¢ (x, y) in (53). However, the values of
G(x, y; x’', y") and D(x, ¥; n,;‘) at such points, based on
(12), (A49) do not depend so critically on the series over
M, but on the closed-form terms arising from the extrac-
tion of the line source and its image. So they “settle down”
to their “final” values faster than when evaluated on the
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Fig. 5. Equipotential lines in the region of even closer proximity be-
tween conductor and wall (a — 4 — d = 0.5) on the basis of (12), (A49)
with m = 20.

basis of (3), (54), in which the series over M, including the
influence of the nearby image source, affects the total
value of G or D in a more direct way, thus requiring more
terms. At other points (x, y) away from the boundary or
when the inner conductor is not close to it, both expan-
sions are equivalent as far as convergence is concerned.

Finally, in Fig. 5 the equipotentials are plotted for even
closer proximity (a —A—d=0.5) on the basis of (12),
(A49) using m = 20.

APPENDIX |

The integrals to be evaluated are defined by the rela-
tions (43)—(51). The first, I}, for m=0,1,2,- - -, is simple:
I,(c,m|A, B)=27ABS, ,+ wBdS,,

d2

Il(s,m|A,B)=7TAd8m1+7773m2 (A1)
where §,,, is the Kronecker delta. The next, I,, is closely
related to the integrals J,, Jy, J,, J5, some of which, but
not all, can be evaluated on the basis of standard integrals
[16, pp. 487-88]. Here, all will be evaluated by contour
integration along the unit circle in the complex plane. To
save space we will illustrate the procedure by outlining the
steps in the case of the more complicated integrals J;,
Js—J; and P24 For the remaining ones only final results
will be provided. So, starting with J;(a,B|n,c¢) and
Ji(a, Bln, s) we observe that they are the real and imagin-
ary parts, respectively, of the integral:

Ji(a,Bln) = %f(}zﬂln[(a— dcosg)’

+(B~dsing)’|emvdg. (A2)
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TABLE IIT
ap = 0g a1 ay a3 a ag ag ay ag
3.061000 | 2.781649-1071
3.072215| 2.725332.1071 {-5.166784 - 107}
3.073703| 2.724612.10-1 |-5.192405-10-*|3,705380- 1072
3.073836 | 2.725084-10"* |-5.195525.10-113,705042-1072| 7.901730.10"2
3.073844 | 2,725111-10~1 |-5.195856- 1071 | 3.704676-1072| 7.904295-107% |2.668834 - 10~
3.073845| 2.725111-10-% |-5.195893-107* | 3.704657-10"2| 7.904651-1072 | 2,668804 - 10~3} -7.034 012103
3.073845| 2.725111.1071 |~5.195897-10~1{ 3.704657-1072| 7.904703-1072 (2.668806-1073| -7.034317-107°-2.709631- 10"
3.073845 2.7251&1-10-1 -5.195898-10~}|3.704657-1072{ 7.904711-10~22.668797-10"° -7.034371~10'1—2.45454640'5 8.169953-10™
by by b3 by bg be by bg
-1.412248
-1.435432 {8.345876-1072
-1.438176 |8.399404-1072{2.274322-107!
-1.438470 | 8.397585-1072{2.277107+107 ! |4.504256- 1073
-1.438495 | 8.397120-1072|2.277429-10"" |4.507281-10-3{-2.241980- 1072
-1.438498 |8.397109-16-2(2.277469-10~'|4.5073677.1072}-2.242247.10"%|-2.748002- 10" "
-1.438498 | 8.397109-107212.277475-10" [4.5073673-1073| -2.242290- 1072 {-2.748056- 107" | 2.417227-10"?
-1.438498 | 8.397108-107%(2.277476-1071|4.5073642-107%{-2.242296-1072|-2.747888- 107 |2.417268-107% [1.54900- 10"

Writing e"®dg = (1/in) de'™?, integrating by parts, and
observing that, owing to periodicity, the integrated term
vanishes, one obtains
[ /2 adsing — Bdcos ¢
Jl(aaﬁln)=—f e'"? 2 . quj
nJo (a—dcosp) + (B —dsing)
(n>0). (A3)

The change of variable e¢?=¢{, d{=i{dp leads to a
contour integral along {{|=1:

Ji (e, BIn)
d n—-1
2n -

(ia-}—B){z—ia-’r,B J
' d(a—iB)¢*—(a?+B%+d?)t+d(a+iB) §

=_i_ nel §2_§1§2 d
2n %|=1§ (§—§1)(§“§2) &
d a+ jpB
g‘l:‘a_iﬁ’ 2 d . (A4)

For n> 0 the only pole of the integrand inside |{|=1 is
{=¢=d/(a—iB) since [{§,|=1 and 0<d<[a®+
B%1'/2, as stipulated. Therefore

T
J1(°‘~B|n) == ;-(1"

d B
W=———77s<1; y:tanl(—)
(@ +p2)" .

T
_ ; Wnemy7

(—7m<y<a) (AS)

v being considered a function of the two real variables
a, B, not just of their ratio. Finally,

¢ m_ [cosny) _
Jl(a,ﬁln,s)=—;W (sinny)’ n=1,2,--- (A6)
1 (24 a’ + B2
Jl(a,,BIO,c)=5f02 {lnd2+ln 1+—;,‘zB—
a . ]
—ZECOS(p"—z’j smq;'_ do’
a2+ p2\]
=7|lnd*+1In FER =7ln(a?+B2),
Ji(a, Bl0,5s) =0. (A7)

The integral of the second logarithmic term was evaluated
from standard forms [16, p. 528].
Following similar steps and using the simple results

Res[exp(af) /¢ o= a’/n!

R ntl] (ia)" /n!, n = even
es[cos(af)/f ]K—O [0, n=odd
. 0’ -
Res[31n(a§)/§"+1]g=o=[_i(m)"/n! n=:1i1n
(A8)
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one obtains

(iMn8)™"
L(c,mM;a,B,8)= me,,,———— sinh ( MnB)
m!
| sin(Mma), m = even
—icos(Mmna), m = odd
(A9)
(iMm8)™
L(s,mM;a.B8,8)= e cosh ( M=)
cos ( Mma), m >0 and even
isin( Mna), m = odd
0, m=0

(A10)

where ¢,,=1 for m >0 and ¢, = 2. Also,

e \[iMmd\" M
J2(M1n,§)=_%(l;n)(l aw ) exp[——Tw(b—B)}

.[exp( iM:A)ﬂ—l)"exp(— iMavrA )]

J,(M|0,s) =0 (All)

7 [ —je,\[iMad\" MzB

on )5l 22
iMaA\ n iMnA

-[exp( ; )+(—1) exp(— p )},

L(M|0,5) =0 (Al2)

ey 7 (Mmd\" Mn(a— A)
J4(M|n,s)—;!—(—b——) exp[—__T_
) (M?TB)
€, sin
MnB J,(M0,5)=0
cos( b )
(A13)
c T Mad\” MaA
JS(MM’S):H(—T) CXp(—T—)
) (MWB)
€, Sin
MaB | Js(M|0,s) =0.
—cos( b )
(Al14)

There remain the integrals Jg to J, defined in (50), (51).
Starting with Jy(M|n,¢), changing the variables e'® =¢,
e ' =7 and using the fact that exp(+iMn)= (-1,
one ends up with the following contour integrals along the
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B.L:.tfor E4(qq) B.L.for E(q)
£ \
: 1
3

_15'\[55 2-A

+ d.
* \ 1
T+
= b-B ___é
q4=0 d 9= 0

n-plane

Fig. 6. Cut y plane for contour integration.

unit circles [{|=1 and |n{=1for n=1,2---:

, 2n
Js(M|n, g) = %( __11)¢|=1nnn;_'_11

In

: [(-1)Mqu1(‘1)‘ eq’E1(‘h)] dnm

e

J(=10)Ye B, (- §)~ e~ 2E,(~ 3))] dt

(A15)
Mand a—-A b-B
=1 a (71“ d T d )
M'nd( A b-—B
g, =1 n+—+i )
a d d (A16)
_ Mnd a-4 b-B
B (; d 4 )
_ Mnd A b-B
e

The branch points ¢ =0, g; =0 in the 7 plane and the
corresponding branch cuts for E,(g), E,(g;) are shown in
Fig. 6. Those for E;(— g), E;(— g;) in the { plane are
shown in Fig. 7. Since (a — A)/d, A/d,(b— B)/d >1 all
branch points and branch lines lie outside the unit circles
Inj=1,1§1=1. So

S[ED] A )
A o)
- [ e,

do=a(n=0)=~""[p-Bria- ). (A1)
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B.L. for B.L. for itself: . ’
(-g,) E1-@) ey I Ma L z( 1)
B4, Jo(Min,§) =~ ——s(Min=1.5)+ | _,
A
e (b-BYD (-n" (-n”
-§4=0 I-G=0 a—A4 b-B\" A4 b-B\”
I —i — i
| . ( d d ) (d d )
{ I
_A 1 a-A (-n" (-1)"
d d TTa—-4 b-B\" [A b-B\"
+i ——i—
( a 'a ) (d " )
i Mnd
=~ —J(MIn-1,)
C- plane 2w DMn| €05
Fig. 7. Cut { plane for contour integration. + 7 (_ ) L1 sin ny
—_ nirrn cosny,
The function F,(q) along with a basic recurrence formula F(-1)"w, sinny, | |
it satisfies, taken from [13], is given below: 2
n=2,3,--- (A20)
dar d
F(q) =—[eE(q)]
% " (a-A)+ (b B)]‘/2
drt (=1)"(n—1) d
=——-|elE + w,= 172 <1
dqn—l[ l(q)] q" [A2+(b_B)2] (A21)
(-1)"(n-1) (=)
-1)"(n—-1)! v, =tan
(g D = o
1 (b—B
Y, =tan (T) (=7 <v,7m<7).

n=1,23,---; F(q) =eE(q). (AlB)

To start the recurrence formula, a separate evaluation of

Application of (A17) and the residue theorem to (A15) for J6( Mil, ;), for n=1, is required. This is obtained from
n=1,2,3--- yields (A19) for n=1. Substituting the four functions F,(q),
‘ appearing in it, by Fy(¢)—1/q, with Fy(q) = eE (q), we

s §)= 2 2 )5 (v Zj:?i(;)"—ﬁ—”{(—nm
.[_%T-(b—B+i(a-—A))] -[—?(b—BH(a—A))]
-Fn[——AZ—W(b—B—iA)} —FO[—A—flz(b—B-—iA)}

g | M (6B i(a-
i(—l)MFn{?(b—B—-i(a—A))] +(=1) FO[ S (6-B-i( A))})

TE, %z(b—B+iA)}}
o PN S G e |

If the recurrence formula of (A18) is applied to the four F, (A22)

functions of (A19), we obtain a recurrence formula for J; There remains the integral J (M]0, ¢), for n=0.
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By analogy with (A15), we now obtain simple poles at
¢, m=0 arising only from d¢’'=d{/i{ and do’'=idn/1.
Therefore,

J,(M|0,¢) = 27r{(—1)MF0[— —Ai—w(b —B+i(a—A4))
M )
- FO[— —;—(b—B—zA)]
+(—1)MFO[?(b—B—i(a— A))]

Ma
- FO[—(b—B+iA)]}, Js(M|0,s)=0.
a
(A23)
The integrals J7(M |n, < ) may now be obtained from
J6(M |7, j) if b— B in Jy is replaced everywhere by B and

the change of variable ¢’ = — ¢ is introduced in (50), (51).
Finally,

J7(M|n, g) =+ J6(M|n,§; with b — B replaced by B).
(A24)

If the two remaining integrals J; and J, are written out
fully, it follows immediately that

JQ(M|n, g) = JS(M|n, g; with 4 — a replaced byA).
(A25)

Following the same procedure, we finally end up with

Jg(M|n,§)=${£—Mbﬂ—ng(

_(_1)n27'”[(_1)MWSn(cosn}’3)

Mln-1,7)

sin ny,
Ccos
4?W4"( ) "Y“)]}; n=2,3,--  (A26)
sin ny,
W, i 1
— <
P [(4-a)+(b- B
W, 4 <1
= <
Yo la-ay+ 2]
(A27)
o t[P7B
Y3 = an A—a
Y4=tan_1(A~a) (—7<v;,v,<m).

Notice that now the recurrence formula relates Jy(M|n, ¢)
and Jy(M|n,s) to Jg(M|n—1,s) and Jy(M|n—1,c¢), re-
spectively. Again the functions y = tan~" (8/«) depend on
both the real variables a, 8, not just on their ratio. For
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n=1 and n =0, we also have

(M §) = ( _11) led{(—l)MFo[— ?(A—a

+i(b——B))]—FO[— —A/Z—W(A—a—iB)]

TL(—l)MFO[?(A—a—i(b—B))}

iFO[?(A—a+iB)]}

2| (- G| -4l G|
(A28)
Jo(M|0,¢) = 277{(—1)MF0[— %(A— a+i(b- B))]

R e )

+(—1)MFO[?(A~a—i(b—B))]

- FO[%(A— a +iB)]};
J(M[0,5) =0. (A29)

All the integrals evaluated in this appendix have also been
checked to very high accuracy (five significant decimals)
by numerical integration. Furthermore, it is easy to verify
that the series over M in (52) converge exponentially with
M, unless the inner conductar is located very near the
shield boundary. In this latter case the expressions of
Appendix II may be used instead.

The last integral to be evaluated,
From Fig. 2 and (62),

0 d N
inR(p.) =lnr(o)= ¥ 5[5 eos(e - )

Pra is defined in (68).

()= £ 4(2)

N1 N7
-(cos No” cos Nw +sin Ng”’sin Nw) (A30)

where w, r are functions of ¢ only. Therefore,

2 [ cosne” iy
folnR(<P,<P)( )dq)

sin ng”
a{d\"
Sz e
n\r sSin nw (A31)
2771nr((p)<(1)), n=0.
For n =0 we refer again to Fig. 2 and expand:
Inr(p)=In(24-a)
| N N
- — -1 Ne. (A32
T yl5ams) (e an)
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Substituting (A36) and (A37) into (68), we get
Pgi=4In(24—a)8, 3,
(8,,=1if p=gq,8,,=0if p+q) (A33)
pra 2 1)" a m8 )
mO_—m(_) (2A—£1) 'pMge

(m=1,2,---). (A34)

For n=1,2,--- we consider the integral
Pr = _}_ flw Cf)s me, p=c d ne—mw(cp) do
andy \sinme; p=s/|r(ep)

(A35)
so that P2¢=RePf, and PZ;=—ImP? . From Fig. 2,
re’>=2A—a+de'® and (re'*) " =1/(2A~ a+ de'®)".
The change of variable ¢ = { leads to

_ 1 §resTm p=c
Prn= 2win%;=1[—i(§m—§""); P'_—S]
1 d¢
-—a——i:‘l—"_g‘— (m=1,2,---) (A36)
[--=)
1 d¢
P&=—;i;¢|%l=l—"m3pc (m=0).
$LE- p
(A37)

The pole at { = (a —2A4)/d is exterior to the unit circle, as
seen from Fig. 2. Only the pole at { = 0 is inside. There-

fore,
pPra 2 d n8 )
On — nl24— a) pcige

while for m=1,2,---

V(1 p=c[dm |, _a24)\7
Fon = -(i; P=s){d§'"[(§ d ) }}§=0

=_l(1; p=c)(m+n—1)(_l)m

n\i; p=s m

24—a\~ "™
. y .
Finally, for n,m=1,2,---

Fan=—8 ﬂ(mﬂ_l)(z/id—a)m“

(A38)

pc n m

PPs =4 (—1) (m+n—-1) d men
P = O m N\24-a)

(A39)

Observe that, although (m+:‘1) increases with m and n,
d/(2A4— a) <1/2. Using Stirling’s formula [13, p. 257],
x!'=2ax* " 2exp(—x+6/12x) (x>0,0<68<1)

(A40)
we obtain, for large m, n,

et
rq mn
|PhAI<

[2amn(m+n-1)]"*"
. =(m+»n-—1)”‘(m+n—1)"- (Ad1)

mn Im 2n
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It is easy to show that er,,, <1. Without loss of generality,
we may assume m=n+s (s> 0). Then

| mh s+1 nl1 s—1
nt,,=(n+s)ln T +n n( + > )
s-1

2 2
Therefore, Int,, < —1 or t,,, <1/e. We made use of the
well-known inequalities [13, p. 68]

< -

x
— <In(1+ <
. n(l+x)<x

x
(x>-1,x+0) and ——-,l~<ln(1—~x)<——x
x =]

(x <1, x#0).
For s=0,1 it is obvious that ¢,, <1. Therefore, |P24
varies at least proportionally to [mn(m + n —1)]71/2.

APPENDIX J1

Based on the expansion (12) for G, the expression equiv-

alent to (52) for K27 is

Pq = _
m 7ab
—~L(p,mA—a,B)J;(2a—A4,b—B|n,q)
- IL(p,mAd,B~b)J(—a—A,— Bjn,q)

+Il(p’m|A_a’B—b)Jl(2a—Aa —Bln’q)]

[11(1’, m|A, B)Jl( —a—A,b- B|”’CZ)

A B d
© 12 p9m|M;;9;9;
sz A
M=1 Mvr3sinh(———)
a

[ =275, (M|n, q) ~ReJ(M|n, q)
+ReJjo(Mn, q) +ReJy (Min, q)]

A B-b d
Iz(p,mIM;'(;, ,“)

a a
- [_‘2'”]3(M|naq)

. { Mab
Mg? smh( )

a
—ReJ;(M|n,q)+ReJ,(M|n, q)
I( M A B d)
2 P,ml ;—>—7_
b b’ b
+ReJ13(M|n,q)]—' o

M

)

) [277{(Mn.q)

Ma 3 sinh

.

-[27rJ5’(M|n,q)+ReJ14(M’]n,q)] ‘
A-a B d
Iz(p,m|zM;——b——,;,-5
Mvra)
b

-+

M3 sinh(

+ReJys(M|n,q)]}, (p,q=c,sors,c),

m,n=01,2,---. (A42)
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The definitions and values of the additional integrals ap-
pearing here are

f27rf27r cosme;, p=c¢
*Jo Jo \sinme; p=s

+dcosg+dcosg’)’+(dsing - dsinq>’)2]

Pq —
Tmn

> ){ln[(2A~2a

+1n [(2A +dcosp+dcosg)’

. . 2]y [cosng’; g=c¢ ,
+(dsing — dsing’) ]}( Sin ng’; q=s) dopde
(A43)
Tpc=_8 l(m%—n—l) ___d__ e
mn P4 m n 2a-24
m+n m+n
+—-—(*l) (m+n—1) ._d_,) :
n m 2A ’
n=12,--- (A44)
T4 28 8 _4 n+( 1)" 4 )n]
0"__chqf(2a-2A Arvint
n=1,2,--- (A45)
Tr8 28 8 . n" )"
= — _— + - e N
mo m"‘qc(2a—2A) (=1) 2A)
m=1,2,--- (A46)
=48,8,.[In(2a—-24)+In(24)] (A47)

JlO(M|n,§) +J6(M|n,s,a—~>—a,A—>A—2a,

b—B——(b-B))

JH(M|n,§)=+J6(M1n,S,

—a,b—B-—>—(b~B))

Ju(Mn, §) = J(Min, §sa>~a,4- 4-2a,
b—B——B)
Jis(Min, §) = JG(M|n,§;a—>~a,b—B—>-B) (A48)
Ta(M1n, §) = g (M1, §; 4 —a—a+4)
is(M1n, §) = J( M, §; 4 —a—>—-2a+A4)
T(Mn,§) = J4(M|n,S,A—>—a+A)
(Min. ) = s

Js(Mn, 54— a+4)

where a > 4 means replacement of a by 4. Finally, the
expression D(x, yn, j) appearing in (53) for the potential
Y (x, y), evaluated on the basis of (12) for G, takes the

{1
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form

D(x, y|n, g) = Jl(x

~A,y—Bln, § )= Ji(2a—x - 4,
y—BIn,g)—Jl(—x—A,y——Bln,g)
+;1b—[ny1(—a—A,b——B|n,§)
+(a~x)yJ1(2a—A,b~B|n,§)
+x(b—y)J1(—a—A,—B|n,§)
+(a—x)(b=y)Ai(2a— 4, - Bn, )|

[ Max, May
sin ( ) sinh ( )
a a

|
S8

Mnb
1 Mo sinh( )

a
-[—277J2(M|n,§)—ReJ6(M|n,c)
+Redyo( Mn, )+ Redyy(Min, )]
Max M
)sinh[——(b——y)}
a a |
M'n'b)

a

iy sin|

Mn sinh(

[~2m( Min, €)~Ress (M1n, )
+Rele(M|”’ g)+Rejl3(Mln’ g)]

R ULAN Max
sm( )smh( )

b b
Mwa)

|
TMS

1 M sinh (

2w (M, $)+Rediy( Min, €)|

) ii sin( by)sinh[MW(a_x)]

b
Mma
Mar sinh ( )

2w (1n, <)+ Redys(Min, )]
(A49)
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