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Exact Solutions for Rectangularly Shielded
Lines by the Carleman-Vekua Method

JOHN G. FIKIORIS AND JOHN L. TSALAMENGAS, MEMBER, IEEE

Abstract —Exact solutions for the field of the TEM mode of rectangn-

Iarly shielded round or strip conductors are obtained by solving finear,

singular integraf equations. There are no limitations on the dimensions or

the proximity of the conductors to the shield. Here only round conductors

are considerer& printed microstrip conductors are analyzed in further

publications. The kernel of the integral equation in such problems is the

Green’s function G of a fine source inside the shield, possessing a

logarithmic singularity near the source point. In a series of recent papers

the authors have developed new expansions for G, in which the singular

and certain other terms are extracted in closed form out of G and the

remaining, nonsingular part is then reexpanded into series converging

uniformly everywhere and very rapidly (exponentially) near the source

point. These new expansions for G are particularly suited for the exact

solution of the siugular integraf equation of round shielded conductors by

the Carleman-Vekua method, otherwise known as the method of regu-

larfzation by solving the dominant equation. This leads to strongly conver-

gent solutions for the field of the mode even when the conductors are large

or very near the shield. Questions of integrability of nonuniformly conver-

gent series do not arise. Characteristic values of the shielded lines,

evahrated by summing a few terms, have been checked against existing

approximate results and field plots are shown in the case of close proxim-

ity. Due to the exponential convergence of the kernel expansion it is

possible to provide useful, closed-form expressions for the characteristic

impedance of the line. The accuracy of such formulas is shown to be amply

adequate for most practicaf situations.

I. INTRODUCTION

R ECTANGULARLY SHIELDED round conductors,

striplines, and printed microstrips are widely used

guiding structures in the microwave band [1]-[5]: The

literature is extensive; here, we confine ourselves to a few

references that will be needed for comparison later. From

the mathematical standpoint such structures constitute

problems involving boundaries of different shapes and

boundary conditions. In a series of recent papers [6]-[9]

the authors have developed an exact analytical approach

for the treatment of such problems. The practical impor-

tance of this approach, if one wishes to disregard its power

of providing exact analytical results for quantities such as

field-function distributions, is that it is not limited by the

dimensions or the proximity of the conductors relative to

the shield and that, in most practical situations, it provides

very accurate results in closed form for quantities such as

the characteristic impedance of the line. Such results and

Manuscript received July 15, 1987; revised October 12, 1987.
The authors are with the Department of Electrical Engineering, Na-

tional Technicaf University of Athens, Athens, Greece.

IEEE Log Number 8719208.

expressions can be very useful in the design of TEM filters

and couplers [3], [4].

In this paper only round conductors of radius d will be

considered, as shown in Figs. 1 and 2. They are completely

shielded by a rectangular a x b shield. Striplines, and,

most important from the practical standpoint, shielded

microstrip lines can also be treated by extensions of the

same general approach [8], [9]; the latter, involving sub-

strates of different dielectric constants, require appropriate

expansions for the relevant Green’s function. Such expan-

sions have also been developed [8].

Crucial to the whole analytical approach is the availabil-

ity of rapidly and uniformly convergent eigenfunction

expansions for the Green’s function G of the configura-

tion. The G function constitutes the kernel of the integral

equation, which is of the Hilbert type for round conduc-

tors and of the Carleman type for strip ones [9]. Its

solution follows the Carleman–Vekua method, otherwise

known as the method of regularization by solving the

dominant equation [10].

Existing expansions for G suffer from two serious de-

fects: they do not converge uniformly in their region of

validity, exhibiting a slow and conditional convergence

near the singular point and, what is worse, they change

expression when the field point moves past the source

point [7]. For such reasons they are unsuited for the

solution of integral equations, in which values of G at the

source point do appear inside the integral.

Another approach based on integral equations should

also be mentioned here. It was developed initially by

Lewin [11] and used by Mittral and Itoh [12] to treat

waveguide problems (Hehnholtz instead of Laplace’s equa-

tion) in shielded microstrip configurations. They do not

follow the Carleman–Vekua method to solve the integral

equation, but they too end up with rapidly converging

series solutions. It is not clear how they would face the

problem of proximity. The Carleman–Vekua method used

herein treats initially all terms of the integral equation

other than the singular as terms containing known func-

tions [10]. Using the well-known inversion formula of

Hilbert (or Carleman), it then transforms the integral

equation into a Fredholm-t ype nonsingular equation; this

is then solved using the appropriate expansions of G.
There are two main advantages: all integrals involved in

the process can be evaluated exactly by contour integra-

tion and the final solution reflects the same convergence
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Fig. 1. Configuration of shielded single conductor
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Fig. 2. Configuration of two-conductor shielded line.

properties that characterize the expansions of the kernel

function G. Another way of explaining the usefulness of

the Carleman–Vekua method is to consider it as a smooth-

ing procedure for solving an ill-posed problem such as a

first-kind singular integral equation, similar to equation

(23) below.

II. RAPIDLY CONVERGENT GREEN’S FUNCTION

EXPANSION AND THE INTEGRAL EQUATION

All field quantities of the TEM mode in the shielded-line

structures shown in Figs. 1 and 2 can be expressed in

terms of a two-dimensional harmonic Green’s function

G(x, y; x’, y’) of a line source at (x’, y’) inside a rectangu-

lar conducting shield; this G function satisfies the boundary

value problem

(32G a 2G
—=–277tl(x -.x’) 8(y-y’)

ax= + ay=

O<x, x’<a, O<y, y’<b (1)

G(O, y;x’, y’)=G(a, y;x’, y’)

=G(x,O; x’, y’) =G(x, b;x’, y’) =0 (2)

where 8(x ) is the delta function. Two new expansions for

G have been developed in [7]. The first, obtained by

extracting the logarithmic and certain other simple

harmonic terms out of G and reexpanding its remaining

nonsingular part, contains four series SJ(X, y; x’, y’) (j=

1,2, 3,4) converging uniformly over the whole region O < x

< a, 0< y < b and exponentially near the source point

(3)

(x’, y’). This new expansion is

G(x> y;x’, y’)

.— – ~ln[(x– x’)2+(y–y’)2] +S(x, y;x’, y’)

—— -~ln[(x-x’)2+ (y- y’)2]

+1/(2 ab)(xyln[(a -x’)2+(b-y’)2]

+(a–x)yln[x’2 +(b-y’)2~

+x( b–y)ln[(a –x’)2+y’2]

+(a–x)(b– y)ln(x’2+ y’=)]

4

+ ~ ~j(x> y; “> Y’)
j+

where

Sl(x, y;.x’, y’) = – : ‘in(%) sinh(%

M=l Mnb

()
Mr sinh —

“{z”sin(%iexp[::
+~a4(zl)

)

(4)

zl=–~(b–y’– ix’)
a

S2(x, y;x’, y’)=S1(x, b–y; x’, b–y’) (

Z*= – :(y’– ix’)

S3(X, y;x’, y’) = – ~ ‘in(%sinh(%)

M=l
A47ra

()
M7r sinh —

“{z”si”(?)e’p[:%(
+~M(z3)

}

(6)

z3=–~(a–x’–iy’)

S4(x, y;x’, y’) =S3(a–x, y; a–x’, y’) (7)

zd= – ~(x’–iy’)

d~(z)=Re{e~z[El( Mz–iMr)– El(Mz)]

+ e-~z[El(- M2-iM7r)-El(-M2)]}

(8)

the bar indicating the complex conjugate. El(z) is the

(5)
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exponential integral function:

El(z) =E1(2)= –y–lnz+Ein(z)

arg ~ < ~, ~ E E&~’~ constant = 0.577215665 . . .

—z

(
1 2! 3!

q(z) - ~
)

l_–+—– —-+... ,
z’ z’

largzl < 3m/2.
Izl-+m z

z

(lo)

Various approximations (asymptotic, continuous fraction,

etc.) for El(z) and for real or complex z, as well as

differentiation and integration formulas and useful recur-

sive relations, can be found in [13].

When the field point (x, y) approaches the source point

(x’, y’) the behavior of G, as given in (3), is well described

by its dominant logarithmic term. The series expansions 5’,

(j= 1,2, 3,4) converge rapidly, in general, in the neighbor-

hood of (x’, y’). This can be deduced from the behavior of

their general term as M ~ co. Thus, from (8) we first

obtain [7]

[

~(z-i7r)2
d~(z) - -&Re ~–(–l)

12- i7r14 1+o(l/M3)
M.cc

(11)

and the absolute value of the general term of, say, S3 is

less than

2

[
— exp –
M 1*exp[-%(a-x)l~(2a-x-x’) +

[

~-(-l)~;:::;:;:
“ ‘e Iz,l “1+o(l/M)

as M - co. Similar relations can be found for S1, S2, S4.

The first part decays exponentially with M and, in

addition, varies as l/M. When both x and x’ are very

near a, the exponential decay weakens and this, as dis-

cussed in [7], is due to the influence of the image line

source at x“ = 2a – x’ with respect to the boundary x = a.

If another logarithmic term, corresponding to this source,

is extracted out of G, another expression for G is obtained

with a series part converging rapidly even for x - x‘ = a.

This second expression for G is given below, in (12)-(18),

and proves very useful when the inner conductor is placed

very near the walls x = O or x = a, or, in case of two

charged conductors, very near each other along the line

y=B.

The second part of the general term of S3 varies at least

as 1/M 3 and decays exponentially unless x = a. Even for

x = a the convergence is uniform, of the other l/M 3. The

convergence of this second part fails only when Z3 or

Z3 – ir approaches zero, i.e., when x’s a and y’= O or

y’s b. In other words, when the source point (x’, y’) is

very near one of the two shield corners on the right. This

situation mav be remedied by extracting out of G three

additional logarithmic terms corresponding to the image

sources around the 90° corner [7]. With round conductors

of nonvanishing radius, this situation does not become

critical.

The second expression for G, in which two more loga-

rithmic terms corresponding to image sources at x“ =

2a – x’ and x ‘“ = – x’ (i.e., with respect to the walls

x = a and x = O) are extracted, is

G(x, Y;x’, y’)= - ~ln[(x-x’)’+(y - y’)’]

+~ln[(x+x’-2a)2 +(y - y’)’]

+ ~ln[(x +x’)’+(y - y’)’]

-&{(a-x)(b-Y)

.ln [(2a - x’)’+ y“]

+x( b–y)ln[(a+x’)’+ y”]

+(a–x)yln[(2a -x’)2+(b - y’)’]

+xyln[(a +x’) ’+( b-y’)’]}

4

+ ~ Sjo(x, y; x’, y’) (12)
j-l

S!(X, y; x’, y’) = f
‘in(=) sinh(%

ikl~b
M=l

()

MT sinh —
a

“(
Mrx’

()
DM(wl)–27rsin —

a

[

Mv ,
.exp –—

a
(b-y)]} (13)

$’(’, -Y; X’, y’) ‘S:(X, b– y; x’, b– Y’) (14)

S:(x, y; x’, y’) = i
‘in(asinh(=)

Mna
M=l

()

MT sinh —
b

“(
Mry’

()
d~(w3)+2nsin ~

[
. exp – y(a+x’)

1}
(15)

sj(x, y;x’, y’) =S](a–x, y; a–x’, y’) (16)

wl=:(–b+y’+ ix’) wz=~(–y’+ix’)

(17)

w~=~(–a–x’+iy’) w4=~(–2a+x’+iy’)

,.. . .. .



662 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL. 36, NO.4, APRIL 1988

From the definition (18) for D~( w) and (11), we now get

+o(l/M3) (19)

and the absolute value of the general term of S: is less

than

2

[

Mr
~ exp – 1Sexp[-%a-x)l~(2a-x+x’) +

. Re

[

+-(-1)~{::::~: “1+o(l/M) .

The first part converges exponentially for all x,x’ (even

for x =x’= a). In addition, since both Wj = (T/b)( – a –

x’+ iy’) and w~ – in = (T/b)[– a – x’+ i(-v’– b)] never

vanish, the second part varies at least as l/M 3 (even at

x = a) and its convergence does not fail at any of the four

corners x’= O, a; y’= O, b. This may be contrasted with

the behavior of S3 near such points, discussed earlier.

Similar remarks hold for Sd and S&-The series Sl, S: and

Sz, S/ suffer only near the walls y = y’ = b and y = y’ = O,

respectively, and this behavior also may be corrected by

extracting out of G further logarithmic source terms at
y“=2b-Y’andY’”=- y’. This is not necessary here,

since proximity to the walls x = O, a only will be consid-

ered.

The expansions (3) and (12) are very appropriate for the

solution of integral equations having G as their kernel on

the basis of the Carleman-Vekua method [10]. For round

conductors, Figs. 1 and 2, the integral equation is of

the Hilbert type. For strip ones the equation is of the

Carleman type and can be further extended to the case of

printed microstrip lines [8], [9]. The formulation in terms

of integral equations is explained in [1]–[3], although the

ensuing treatment is strictly numerical or approximate.

The problem of close proximity of the conductors to the

shield walls and the difficulties it creates are also discussed

in [1] and [2]. It will be seen in the following that this

problem is faced head on here and, by strictly analytical

methods, answers are provided to any required degree of

accuracy. Critical in this approach is the proper expan-

sions (3) and, in particular, (12) for G. Extraction of the

image term to improve the convergence of the G function

has recently been used in scattering problems as well [14].

We start by formulating an integral equation for the

single round conductor of Fig. 1. Two-conductor config-

urations will be considered later, since they constitute

rather simple extensions of the main problem of Fig. 1.

The basic unknown function is the surface charge distribu-

tion U(p) (C/m2 ), for O <9<2 r, on the round conductor

surface of radius d and center (A, 1?) inside the shield

a x b. All TEM field quantities can be evaluated by well-

known integrals over this (charge distribution) function.

Thus, the electrostatic potential function and the field at

any point (x, y) or (r, p) (around the center of the con-

ductor) are

I)(x, y)=lj(r, ql)

= :~2”U(@)G(X>Y; “, Y’) @’ (20)
o

E(’, y) =E(r, q))= –v+ (21)

x= A+rcosq y= B+rsinrp

x’=A+dcos@
(22)

y’=B+dsinq#.

If the potential of the inner conductor is ~ (d, qI) = V, an

integral equation for u(9) is obtained from (20) by letting

r = d [10], [15]:

~V=~2”u(@)G(A+dcosp, B+dsincp;
o

A + dcoscp’, B + dsinrp’) dq’. (23)

With r = d one gets, from (22), (x – x’)’ +(y – y’)2 =

4d2 sin’ ((q’ – cp)/2) and substituting from (3):

27r60v
—— – in (2d)~2”u(@) dcp’ + ~2”u(cp’)S’(q, q’) dq7

d

=J2”~(991n sin(q) dv’ (24)

where S’ is the value of S when both source and field

points fall on the conductor surface:

S’(q, p’)= S(A+dcosq, B+dsinq;

A+dcosqY, B + dsinrp’). (25)

Equation (24), a singular integral equation with logarith-

mic kernel, will be transformed to a more conventional

type by considering u(rp ) as the derivative of a new

unknown function JV(rp) [10], [15]:

u(q) =W’(p) =dW(q)/’dcp. (26)

Substitution in the dominant (logarithmic) term of (24)

only and integration by parts leads, finally, to

27KOV

d
+2moln 2dsin~ –I ~2mO(V’)S’(CP#) dq’

‘;~2”~(@)cot(~) d~’ (27)

U.= :[W(2m)– w(o)] = &~2”u(rp) drp. (28)

III. SOLUTION OF THE INTEGRAL EQUATION BY THE

CARLEMAN–VEKUA METHOD

One may now recognize (27) as a Hilbert, principal-value,

singular integral equation of the first kind [10], [15]. A

necessary and sufficient condition for its solution requires
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further [15, p. 190] that

2. 2TTCOV

J[
+27ruOln 2dsin ~

o d

-~2”S’(~,~J)u(T’)d~’]d~=0 (29)

whereupon, by Hilbert’s inversion formulas, one obtains

with K some constant, whose value is not required, since

we need only the function u(~). Using the results [10, pp.

79-80]:

J
277 e–(p

cot — de=o
o 2

8 d–q
(31)

J
271n 2 sin ~ cot ~dd=n(n–q)

o

one gets

w(q)) = – Uo(m- q)+ &J2”~2”u(qmw)
19-qJ

.cot ~ dfldq’ -t K. (32)

At this point one may observe that with S’(cp, q’) -O, i.e.,

G = – ~ ln[(x – x’)* + (y – y’)2], (32) yields the correct

solution for the unshielded conductor: W(~) = – u,( m –

q)+ K, u(q) = UO= constant. In this case (29) provides

the correct relation between u, and V if the radius r,,

where $( r, ) = O, is taken into account.

Expanding now U(~) and W(q) into the Fourier

u(q) =O. + ~ (a. cosnq+b. sinnp)
n=l

w’(q) =Wo+uorp+ ~:1 ;(anshlnq-bncosmp)

series

(33)

(34)

substituting them into (32), making use of the ortho-

gonal properties of the sin mcp, cos mq (m= 0,1,2, 00‘ )
functions in combination with the basic relations [10,

pp. 79-80]

J
‘w e–q)

Cos m q) cot ~d~=2rsinm9
o

(nl=o,l,2,... ) (35)

/

277 . 19-rf
sm mq cot —dq=–2~cosm9

o 2

and performing first the integration with respect to ~ from

q = O to 2T, one gets

form= O: Wo=–uor+K

b~
_—

form =l,2,... : m
am

—
m

r w

1.S’(13, cp’)luo+ ~ (a. cosnq’+bHsinnq’) df3d (37)
L ~=1 -1

The integrations involved in (37) are carried out in Ap-

pendix I. The end result is a system of 2m homogeneous

linear equations (m= 1,2,..0, co) for the 2m + 1 unknown

b having the formexpansion coefficients 00, a ~, ~

b
— X = K#orJo + ~ ‘(K&a~ + K&b~) (38a)

m ~=1

am
— — = Kjooo -t ~ (K~.a. + K~.b.) (38b)

m ~=1

where the Kg: (p, q = c,s or s, c) are defined below. The

required additional nonhomogenous linear equation is pro-

vided by substituting (33) into (29). The end result relates

the coefficients u,, a ~, and b. to V and has the forlm

460V
~ +4uolnd= K~oo + ~ (K&a. + K&bn). (39)

~=1

To get this equation use was made of the integrals [16,

p. 584]

/lln(si@co@~x) d~
o

=2~121n(sinrx)cos(2~~~)dx
o

(

–ln2, n=O

. 1 (40a)——
2T ‘

‘n>O

J
2“ln 2dsin ~ dq = 2~ln d. (40b)

o

S’(cp, q’) is defined in (25) and (3)-(9) or (12)-(18). It is

important to notice that its dependence on T and rp’

appears in a separated form and facilitates greatly the @

and qf integrations in (37) and ~.he q, rp’ integrations in

(29). Thus, two types of integrals arise from (37):

(m=0,1,2,., ) (41)

(m=l,2,... ) (36) (n=0,1,2,.. ). (42)
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The specific integrals

classified as follows:

11(:,+4,B)

to be evaluated (see Appendix I) are

‘12”(:=:)(A+dcos6)(B +dsin8)dfl (43)

12(&nlM;(x,&8)

=~’n(~~~~)sin[ill~ (a+dcosd)]

,sinh[M~(~ +8sin O)]d0 (44)

J1(%BI%: )

~ ~’”ln [(a - dcoscp’)’+ (~ - dsin~’)’]._

“( )
~~;:: dq’ (45)

J2(MI% ;)

=~2WSi&A+dCOSq)]

[

M??
. exp – y(b-B-dsinrp’) 1( ):;:;:dqY

(46)

4( fWn, f)

277 .

J[

M77
. sm —

o a
A + dCOS ff’) 1

[

MT
. exp -y(ll+dsinq’) 1( ):;:;;dqY (47)

‘1’”sin[:(~+dsiw’)]

[
. exp – 1( )~(a-A-dcos@) ~~!~: dq’

(48)

J,(Mn,~)

=~’”sin[y(~+dsiwf)]

[
. exp – 1( )$(A+dcosq’) j!;’; dq’

(49)

J5+, (wj :)

=J’”{e~z[E1(Mz,- iMm)-E1(Mz,)]

“( )cos nqY
dcp’

sin nrf’
(50)

with j =1,2,3,4 and

Zl= – ~[b– B–dsinrp –i(A+dcos#)]

Z2= – ~[B+dsincp’ -i(A+dcosq’)]

wd

-(

AB
— i_ ez~’+ _+i ——

a dd )

z,=- ~[a-A-dcos#- i(B+dsinq’)]

~d

-(

a–A B
—— ew’_ — +ij

b d )

Z4= – ~[A+dcos q’–i(B+d sin@)]

nd

(

AB
— _——

)
e-i~’+ ~–ij .

b

(51a)

(51b)

(51C)

(51d)

In (44) the restriction O <8< \al, 1~I holds among these

three parameters. Also, in (45), O < d < [a’+ ~ 2]1/2. Based

on the expression (3) for G, the definition of K;% in terms

of these integrals is the following:

K;: = &[ I1(p, mlA, B) J1(a-A, b- Bin, q)

–I1(p, nzlA-a, B) J1(-A, b- Bin, q)

–I1(p, rnlA, B- b) J1(a-A, -B@, q)

+ll(p, rnlA-a, B- b) J1(-A, -B\n, q)]

[

( ABd
12 p,mjM;;,~,~

-f
1~nb [2mJ,(Mln, q)

M-=1

()
MT 3 sinh —

a

(
A B–b d

12 p,m~M;i,~,;

+ReJ, (Mln, q)]– )
Mrb

()
MT 3 sinh —

a

[2~.13(Mln,q)+R eJ7(Mln,q)]

(
ABd

12 p,mliM; F,X, Z
)—

Mra

H
Mm 3 sinh —

b

.[2rJ,(Mln, q)+ ReJ8(Mln, q)]

( A–a B d
12 p,m~iM; —

+
b ‘X’i )
Mna

(1
MT 3 sinh —

b

.[2mJ,(Mln, q)+ ReJ9(Mln, q)]

1

(p, q=c, sors, c), m,n=0,1,2, ”. (52)
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Obviously K~: = K~O = O. As observed in Appendix I, the

series over M in (52) converge at least exponentially with

M, unless the inner conductor is placed very near the

shielding walls. If (12) instead of (3) is used for G, another

expression results for K~:, in terms of the same 1 and J

integrals and the integrals PJ: defined later on in (68) and

(A39). This other expression for K~~, more appropriate

when the conductor is very close to the walls x = O, a, is

given in Appendix II.

IV. EVALUATION OF THE FIELD

At any poin~(x, y) inside’ the shield the potential $ (x, y)

and the field E(x, y) are evaluated from (20)–(21). Owing

to the separated dependence of G on x, y and x’, y’ the

integrals over q’ are exactly the ~ ‘s, for j = 1 to 9, defined

in (45)–(51). The results are

For the field E(x, y) = – v+ (x, y), the partial deriva-

tives d/8x, il/8y are very simply obtained from (54) for

all terms apart from the first, for which, after referring to

definitions (A5)-(A7), we have, for n =1,2,”. o,

aJJx-A, y- Bp’z,;)/ay

‘mwn+2[(:::J)(y-B)-(~::)(x-A)l/d2
(56)

+(X,Y)=-+ {UOD(X, ylo,c)
““= [(x- A)’:y_B)2,1/2 Y=tan-’::; . (57)

+ E [an~(.x, yb, c)+ W(X, Yl~,~)l) Forn=O

(53) [1aiax

[ 1/2X–A

slay
J1(x–z4, y–~lo,c) ‘~~W y_B d2. (58)

~=1

D(x,yl~,f)=J,(x-A,y-~ln,~)
— ‘Jxy+ml,b–lqn,;)—

V. TWO-CONDUCTOR CONFIGURATIONS

+(a–x)yJ1(– A, b–Bln, ~) Such configurations with arbitrary conductor radii and

+x( b-y) J1(a-A, -Bin, ~)
positions lead to a system of integral equations for Ul(qq)

and u?( q? ). More practical ones consist of conductors of

+(a-x)(b-y)J&4-B@]

, ~ ‘in(=)sinh(v)
Mvb

M=l

()

Mn sinh —
a

the sa-me‘radius d; symmetrically placed with respect to

the midplane x = a/2, as shown in Fig. 2. They are raised

to potentials V and Q V, with Q = 1 implying equal cur-

rents and charges, Q = – 1 opposite ones, and Q = O the

absence of Lz, i.e., the one-conductor configuration of Fig.

1. Because of the symmetry

II
u2((p’) = Qul(m–– c#); U1(@) = dW( qY)/d(p’ (59)

.[2~J2(M]n,~)+ReJ~(Ml~,j)j

+ ~ ‘in(:]sinh[~(b-y)]
M~b

M=l

()
MV sinh —

a

[2nJ,(Mln,~)+ReJT(Mln,’~)]

, ~ ‘in(%) sinh(%)
Mva

M.1

()
MT sinh —

b

.[2fi.l,(Mln,~) +R~J8(~!n,j)]

+’5 sin(%) sinh[~(a-x)]

M7ra
M=l

()
itfr sinh —

b

[2TJ,(Ml~,;)+ReJ,(Mln: )]7
n =0,1,2, . . . . (54)

Obviously D(X, ylo, s) = O.

the potential ~ (x, y) at any point (x, y) exterior to the

conductors is

+(x, y)

‘(4-:J2””,(9°
.ln[(x– A–dcosqJ)2+ (,y– B–dsin#)2]dq’

+ (y – B – dsinq’’)’] dcp”+ Q~2mu1(fi – T“)

)-S(X, y; a–A+dcosqY’, B+dsinqY’) d@’ .

(60)

Letting (x, y) fall on the surface of -Ll, i.e., x = A + d cos q,

y = B + d sin q, we obtain a singular integral equation with
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logarithmic kernel for Ul(q’) or a Hilbert-type one for

W(q’). The latter is

2mov
+27ruOln 2dsin ~

d
1- ~2%(@)S’(CP,@) d~’

o

(61)

and reduces to (27) for Q = O. 0. is defined in (28),

S’(cp, rp’) in (25), while

R(cp, rp”) = [(2 A–a+dcosp–dcos@’)2

+ d2(sinq – sin@’)2] “z (62)

S“(q, @’)= S(A+dcosq, B+dsinq;

a–A+dcos qi’, B+dsinqi’). (63)

The necessary and sufficient condition for the solution of

(61) now takes the form

‘r 277fov

J[
— +2~uoln12dsin;l -/2”u,(T’)s’(9* 9’) 4’

0 d o

+ Q~2”u1(m – rp”) in Rdrp”
o

1-Q~2”01(T - rp’’)S’’(rp, (/’) dq” dcp = O (64)

and Hilbert’s inversion formula, along with (31), leads to

– Q~2”CT1(n - qf’)ln R(6, q“) dp”

+ Q~2mu1(m – cp’’)S’’(8,rp”)dqi’ 1
o–q

.cot
()

— dO.
2

(65)

Using the expansions (33), (34) and the formulas (35), (36).

we get

m)

“[CJo+ ~ (a~cosnq’+ bnsinnq’)
~=1 1

[+Q[S’’(d, qY)–ln R(O, rp’)] Uo+ ~ (–1)”
~=1

1}
.(ancosnrp - b~sinn p’) df)drp’. (66)

TABLE I

2d/b a/b Zo~:)3this work
M=5 ZO(Q) from Cristal

0.6 2.1 44.81 44.17 44.1

0.4 1.9 68,86 68.74 68.7

0.2 1.7 109.94 109.91 109.91

Q=O, A=a/2, B= b/2.

Equations (38a), (38b), and (39) follow in identical form.

The only change occurs in the definition (54) for Kj:,

which corresponds to the case Q = O. For Q = 1 or – 1 we

have

K~2(Q)= Kif+Q(–l)”s~(LJ~ –P~;) (67)

(

1 forq=c
Sq=

–1 forq=s

where Lj: follows from K~: in (52) if A is replaced by

a – A in all the J integrals (depending on n), while the 1

integrals (depending on m ) remain unchanged. All this is

based on expansion (3). Also

This double integral is also evaluated in Appendix I.

Finally, $(x, y) and E(x, y) at any point (x, y) follow

from (60), which ends up again in the form (53) with the

function D(x, yin,:) replaced now by D(,x, yin,:)+

Q(– 1)”(_~)~(x, .YFz, :), where H follows from D in (54)

if A is replaced everywhere by a – A. The partial deriva-

tives d/dx, 13/d y for the field are again very simple to

obtain; for the first term J1 of H we use (55)–(58) with A

replaced by a – A.

VI. NUMERICAL RESULTS AND COMPARISONS

In Table I we compare numerical results for the char-

acteristic impedance 20 = l/cC = &V/(2 ~ duo) in ohms

(c= l/@ is the velocity of light and C = q/V=

2 rduo/ V is the capacitance per unit length) of one-con-

ductor configurations (Q= O), with A = a/2, B = b/2,

obtained by Cristal [3] and our method. Like ours, Cristal’s

results are not limited to small-diameter center conductors

and were obtained by solving numerically integral equa-

tions. His matrix size, 40X 40, should be compared with

ours MxM=1x1,3x3,5x5, where it4=2m+l is the

truncation number for the unknowns Uo, a ~, bm. Our re-

sults settle very rapidly to their final values for small M

owing to the strong convergence of the (kernel) Green’s

function expansion. A table of the successive values of

Uo, am, b~, as m increases, is given later on. The agreement

with Cristal’s results [3] is excellent. The fact that our

results do not differ for M = 1 and M = 3 is due to the

symmetry of the configuration (A = a/2, B = b/2), which

implies al = bl = O.
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TABLE II

2d/b Chisholm/McDenwtt
s/b* Lew —._. Ws Work’:–.-i- --

Q.1 Q.. I Q=~ Q=-, q=~

—

.354 .176 3.9142 7.5347 3.9153 7,5528 3,9132 7 5494

.400 .226 4.5093 7.5347 4.5080 7.5404 4,5P42 7,5NH
—

436 .280 5.0281 7.5347 5.032 7,5501 5,0332 7.5468

.462 .338 5.4731 7.5347 5.4718 7.5371 5.4718 7,5343
—.

.482 ,398 5.8497 7.5347 5.8446 7 5339

‘“ ‘ ,

5.8455 7 5139

.498 .462 6.1648’ 7.5347 6.1721 7,5436 6,1721 7,5451

.510 .528 6.4257 7,5347 6.4380 7,5514 6.4399 7.5508

.519 .596 6.6404 7.5347 6.6424 7.5371 6.6421 7.5366

,534 .806 7.0727 7,5347 7.0710 7.5359 7,0721 7,5361

,544 1.168 7.3855 7.5347 7.3806 7,5285 7.3819 7.5304

.400 .080 4.1646 11.0783 4.1553 11.2882 4.1651 11,2371
— —

.400 .120 4.2631 9.4595 4.2626 9.5317 4,2634 9,511[1

.400 .160 4.3578 8.4935 4.3516 8 5419 4,3579 8.5152
—

.400 .200 4.4483 7.8478 4.444 7,8652 474481 7.8584

.400 .240 4.5340 7.3863 4.5358 7,398; 4.5337 7.3917

.400 .400 4.8273 6.3903 4.8263 6.3914 4.8266 6,3903

boo .600 5.0826 5.8862 5.0819 5.8848 5.0R18 5 8848

.400 .760 5.2134 5.6949 5.2130 5.6946 5.2128 .5.6940
1

*s=2(A–d)–a.
**a/b = 20, M = 5–9.

In Table II we compare results for two-conductor con-

figurations, for both Q = – 1 and Q =1, with those of

Levy and Chisholm/McDermott [4]. They refer to the

normalized capacitance C/c ~ and open guides in the x

direction (a/b = CM). We approximated this situation by

using a/b = 20 to obtain our results. The parameter s in

[4] is the shortest approach between the conductors, equiv-

alent to s = 2(A – d) – a in our case. Levy’s results were

obtained by a combination of conformal transformation

and numerical techniques. Ours were based on matrix sizes

between 5 X 5 and 9X 9. The agreement is again excellent.

This fact justifies providing a single-term formula (for

m = O or M =1) for the first coefficient U. of U(~), on

which the evaluation of C or Z. is based. For conductors

not too large or proximities not too close, either to the

shield or between them, the following simple formula,

obtained from (39) and (67), can be useful in TEM filter or

coupler design (for Q = O, ~ 1).

460V 1
~o. —

d K~(Q)–41nd

4+7 1
——

d KZ+Q(L&– P$)–41nd”
(69)

Another check on our formulas is provided by observing

that the case of Fig. 2 for Q = – 1 is equivalent to the case

of Fig. 1 with a reduced to a/2 (perfectly conducting wall

at x = a/2). In all cases with Q = – 1 in an a X b shield,

we obtained numerical results identical with those having

Q = O in an (a/2)X b shield. Observe that the function
R(q, T“) is O for Q = O.

Finally, based on tlie formulas (53) to (58), nine

equipotential lines + = 0.9 – 0.8 – “ o“ – 0.1, between + = 1

=’ V on the conductor and @= O on the shield were plotted

Fig. 3. Equipotential and field lines of shielded single-conductor line.

in Fig. 3, along with field lines starting from T = 0(’ every

30° around the conductor. The configuration corresponds

to a = 30, b = 20, A = 22, B =5, d = 3. The eqtipotentials

were plotted by varying rp by steps of 2° from q ==0° to

T = 360°. Th 1e a gorithms for these evaluations, making use

of the methods of bisection and Newton–Raphson for

determining roots of complicated equations related to

(53)-(58), cannot be described herein for lack of space. As

expected, the field between the conductor and the shield in

their nearest approach, i.e., for xs 22( = A) and O < y <

2(= B – d) is almost uniform (almost straight and

equispaced equipotential lines). In Table III below the

values of U. = ao, am, b~ in 10 –‘ 2 Cjm2 are given for

successive values of matrix size M’= 2m +1, ‘for the con-

figuration of Fig. 3, showing the quick settlement of their

values with increasing M. For m ==1 (M= 3) the value of

UO= 3.061 (or C, 2.) is 0.3 percent off the correct one

U. = 3.0738. Values of o(q) or the field, however, require

use of more a ~, b~. For the plots of Fig. 3, for example,

m = 8 (~= 17) were used. In this particular case the use of

either (3), (52) or (12), (A42) yields the same am, b~ with

comparable accuracy. When the conductor approaches

either of the walls x = O or .x = a, the second set, i.e., (12),

(A42), (A49~ is more advantageous, particularly when

+(x; y) or E(x, y) is evaluated in the region of close

proximity. The situation is illustrated in Figs. 4 and 5, &

which the equipotentials $ = 0.9 – 0.8 – “”” 0.1 are plotted

in the region of close proximity of the conduct@ to the

wall x = a. For both figures, a = 30, b = 20, B = 5, d =3,

while A = 26 (minimum distance of conductor from wall

a–A–d=l) in Fig.4and~= 26.5( a–A–d=O.5)in

Fig. 5. In Fig. 4(a) and with m =15 (M= 31), the

equipotentials + = 0.2 – 0.1 (very near x = a), when

evaluated on the basis of (3), (52), (54), instead of turning

out smooth, almost Straight lines, they tend to oscillate,

indicating a lack of accuracy in their computation. This

disappears either by using more terms, m = 20, or by

making the evaluation on the basis of (12), (A42), (A49)

with fewer terms, m =15 or even less, as shown in Fig.

4(b). This result points to the superiority of (12), (A42),

(A49) in such situations and can be explained as follows:

when x is very’ near a the series S3(X, y; x’, y’) in (4),
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(a) Fig. 5. Equipotential lines in the region of even closer proximity be-

tween conductor and wall (a – A – d = 0.5) on the basis of (12), (A49)
with m = 20.

basis of (3), (54), in which the series over M, including the

influence of the nearby image source, affects the total

value of G or D in a more direct way, thus requiring more

terms. At other points (x, y) away from the boundary or

when the inner conductor is not close to it, both expan-

sions are equivalent as far as convergence is concerned.

Finally, in Fig. 5 the equipotentials are plotted for even

closer proximity (a – A – d = 0.5) on the basis of (12),

(A49) using m = 20.

APPENDIX I

The integrals to be evaluated are defined by the rela-

tions (43)–(51). The first, 11, for m = 0,1,2,. -., is simple:

II(c, mlA, 1?) = 2m4Br$mo+ ~Bdi3n1

(b)

Fig. 4. Equipotential lines in the region of close proximity between

conductor and shielding wall (a – .4 – d =1). (a) On the basis of (3)
aud (54) with m = 15, (b) On the basis of (3), (54) with m = 20 or on
the basis of (12) and (A49) with m = 15.

(3) or S’:(X, y; x’, y’) in (15), (12) lose their exponential

decay with M, arising from the fraction sinh(M~x/b)/

sinh ( M~a /b ), and the same thing happens with the corre-

sponding terms in (56) and (A49) for D( x, y In,:), when

evaluating ~ (x, y) in (53). However, the values of

G(x, y; x’, y’) and Z)(X, y; n,;) at such points, based on

(12), (A49) do not depend so critically on the series over

M, but on the closed-form terms arising from the extrac-

tion of the line source and its image. So they “settle down”

to their “final” values faster than when evaluated on the

where 8~” is the Kronecker delta. The next, Iz, is closely

related to the integrals J2, J3, J4, J5, some of which, but

not all, can be evaluated on the basis of standard integrals
[16, pp. 487–88]. Here, all will be evaluated by contour

integration along the unit circle in the complex plane. To

save space we will illustrate the procedure by outlining the

steps in the case of the more complicated integrals Jl,

Jc – J9 and P::. For the remaining ones only final res~lts

will be provided. So, starting with Jl( a, /3 In, c) and

J1( a, ~ In,s ) we observe that they are the real and imagin-

ary parts, respectively, of the integral:

J1(a, /31n) = ~~2”ln[(a–dcoscp)2

+(B – dsinp)2]e’”~dq. (A2)
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TABLE III

ao = 00 al
7

3,061000 2.781649 .10-’

3.072215 2.725332 .10-’

3.073703 2.724612 .10-’

3.073836 2.7250 t?4.10-’

3.073844 2.725111 .10-1

3.073E45 2.725111 .10-’

3.073845 2.725111 .10-’

3.073s45 2.725111 .10-1

bl bz

az a3 Q4

-5.1667 S4.10-]

.5.192405 .10-’ 3.705380 .10-2

.5.195525 .10-’ 3.705 C42.10-2 7.901730 .10-’

-5.195856 .10-’ 3.7 C4676.10-2 7.904295 .10-2

.5.195893 .10-’ 3.7 C4657.10-2 7.904651 .10-2

-5.195897 .10-1 3.7 M657.10-’ 7.904703 .10-’

-5.195898 .10-1 3.7 C4657.10”2 7.9C4711.1O-”

b3 b4 b5

a5 a6

I

.668834 .10-’

. 6688C4 010-’ -7.034012 .10-’

.668806 .10-3 -7.034317.10-:, .

a7 a8

?. 709631 .10-6

.668797 .10-’ ‘1-7.034371.10- 2.454546 .10-’

b6 b7
b8

\.16W53.1u-q

-1.412248

-1.435432 8.345876 .113-2

-1.438176 8.399404 .10-2 2.274322 .10-1

-1.438470 8.397585 .10-2 2.277107 .10-’ 4.504256 .10-’

-1.438495 8.397120 .10-2 2.277429 .10-’ 4.507281 .10-s -2.241980 .10-2

-1.438498 8.397109 .10-2 2.277469 .10-1 4.5073677.103 -2.242247 .10-2 -2.748002 .10-’

-1.438498 8.397109 .10-2 2.277475 .10-1 4.5073673 .10-3 -2.242290 .10-2 -2.748056 .10-’ 2.417227 .10-3

-1.438498 8.397108 .10-2 2.277476 .10-1 4.5073642 .10-3 -2.242296 .10-2 -2.747888 .10-’ 2.417268 .10-3 1.54900 .10-5

Writing e’n$’ drp = (l/in ) de’n~, integrating by parts, and y being considered a function of the two real variables

observing that, owing to periodicity, the integrated term a, ~, not just of their ratio. Finally,

vanishes. one obtains

(n> O). (A3)

The change of variable e’~ = {, d{= i{dcp leads to a [
.ll(a, ~10, c) = ~~’”{lnd’+ln 1+ ~

contour integral along 1{1=1:

‘:$,.:”-l
(ia+~)~’-ia+~

d{
d(a–ip)f’ –(ct’+~’ +d’)f+d(a+ip)

P

1)
–2~cosq’–22sinip’ dq’

‘71nd2+1n(~:)l=
+$,={..l ~’-~lf,

J-,(a, /?lO,.s) = O. (A7)
——

({-(, )({-{2) ‘{’ The integral of the second logarithmic term was evaluated

{,=—
.~i~~’=~ (A4)

from standard forms [16, p. 528].

Following similar steps and using the simple results

For n >0 the only pole of the integrand inside I(I = 1 is

{={1 = d/(a– iB) since I{JzI =1 and 0< d < [a’+
Res[exp(a{)/tn+ l]{= O=a”/n!

~ 2]1/2, as stipulated. Therefore

[,
Res[cos(a{)/l”+ l]{=O = ~ia)”/n!’ n = even

J1(a.~ln) = – ~~f = – ~W’”e’”y, n = odd

‘= (a2+;2)l/2 ‘l; Y=tq:) [

o, n = even
Res[sin(a{)/{”+ l]r=O= _ i(z,N)’/n!,

n = odd

(-m<y<~) (A5) (A8)
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one obtains

(iM7r8) m
12( C, WZIM; a,~,a) =mcm ~, sinh ( Mn~ )

“[sin ( Mna), m = even
— icos(flkx), m = odd

(A9)

(iM7rfS) m
12(,s, mlA4; a,~,~) = –77 Cosh ( Mnp )

m!

(
Cos ( Mm) , m >0 and even

“ isin(M7ra), m = odd

o, m=o

(A1O)

where c~ =1 for m >0 and CO= 2. Also,

‘(i’n)(%)nex’[-:’b-B)lJ2(Mln,3=– Zn! ~

[“’(%) ( )1

iM~A
T(–l)”exp –~ ,

J,(MIO, S) = O (All)

wn)(%Tex’(-%3J3(W>; ) = Zn!

‘[ex’(=lT(-l)nex’(-%)l
J3(M10, s) = O (A12)

FT’X’[-M”(:-A)IJ4(Mlrz, j) ‘~ ~

“11
MTB

()
t~sin —

b

MtrB ‘

()

J4(M10, s)=0

Cos —
b

(A13)

( ‘j”eX’(-%)J+O,;) ‘; – b

“11
MvB

()
e~sin —

b

MTB ‘

N

J5(M10,.s) =0.

– Cos —
b

(A14)

There remain the integrals JG to J9 defined in (50), (51).

Starting with Jc( Mln, :), changing the variables e“” = {,

e-z’” = q and using the fact that exp ( + iMfi) = ( – 1)~,

one ends up with the following contour integrals along the

B. L+ For ~(ql) B. L. fo~E+q)

=&A
1 +a.

—

t 4b-B--—_____—-—__$
/+

q=o Id q=o

q-plane

Fig. 6. Cut q plane for contour integration.

unit circles 1(1=1 and Iql=l for n=l,20 ..:

. [(-l) ~e~E1(q)- e’lEl(ql)] dq

. [(-l) ”e-~E,(- Z)- e-71E1(- ~1)]d{

(A15)

M~d

(

a–A b–B
q=j — ~– —+i —

a d d )

The branch points q = O, ql = O in the q plane and the

corresponding branch cuts for El(q), -El( ql) are shown in

Fig. 6. Those for El( – ij), El( – ijl) in the { plane are

shown in Fig. 7. Since (a – A)/d, A/d, (b – B)/d >1 all

branch points and branch lines lie outside the unit circles

lTfl =1, IJI =1. so

‘es[eq:Jf)lq=o=:(:’eqEl(’)’}q=o
1 M~d n d“

.—

( H
i— ~[eqL(9)ln! a } ~=o

1 Mvd n
.—

()
‘— F~(qo),1

~! a

y[b-B+i(a -A)]. (A17)~o=4(n=o) =-MT
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B.L. for B.L. for itself:

i

$(-q,) Elktj)

A

i

MEIJ6(MI. -1):) +;(:Z)J@ln>:)= ~ ~

(b-B)/d

“[

(-l)M (-l)n----------- . .-—-—----
;-ql= o l-q= o

( +“i%T[:+”~T

A 1 ad
> (-l)M

.—
c1 d

*

( %+ ’%R%2T.

I 2EL@ln-lJ.—
na

C- Plane
Fig. 7. Cut J plane for contour integration.

‘+’MW’(:N)

( )1

cos nyz

The function F.(q) along with a basic recurrence formula T(–l)nw:
sin n yz,

,

it satisfies, taken from [13], is given below:
~ =2,3,.... @20)

_ ~n-1

—
p[eq~l(q)] + ‘-l)j~-l)!

“= [(a-~)2+~~-13j2]”2 ‘1

‘2= [A2+(b!_ ~)z]lvz ‘1

(-l)”(n -l)!
()

yl= tan–l ~

=F.-l(q)+
q“ ‘ b–B

y2 = tan-l
()

(-7r<y1, y2<T).

FO(q) =eqlil(q). (A18)
A

n=l,2,3, ...;

(A21)

To start the recurrence formula, a separate evaluation of

Application of (A17) and the residue theorem to (A15) for .lG( Mll, :), for n =1, is required. This is obtained from

n=l,2,30”” yields (A19) for n =1. Substituting the four functions F,(q),

appearing in it, by Fe(q) – l/q, with lie(q) = eq-%(q), we

7(1 )(i+)”((-l)”FnJ~(fWln>j)‘~ _i

[
-~(b-B+i(a-A)) I

[
–Fn – ~(b-B-iA) 1

t(–l)”F.
[

:(b-B-i(a. -A))
1

T F,
[ 1}~(b-B+zA) . (A19)

finally obtain

J@:) = ([)%((-l)~Fo

[
.— ~(b-B+i(a-A)) 1

[
–F. – $(b-B--iA) 1
+(–l)”FO [~(b-B-i(a-A))]

T FO
[

:(b-B+iA) 1}

[ (:WW’G31+27r (–l)”wl

If the recurrence formula of (A18) is applied to the four F.
(A22)

functions of (A19), we obtain a recurrence formula for Jc There remains the integral JG(A410, c), for n = O.
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By analogy with (A15), we now obtain simple poles at

{, q = O arising only from dq’ = d~/i~ and dtp’ = idq/q.

Therefore,

([4(kflo, c)=27i’ (–l)”Fo – ~(b-B+i(a--4)) 1

[-F. -~(b-B-iA) 1
+(–l)”Fo

[
~(b-11-i(a-zt)) 1

–FO
[ 1}~(b-ll+ifi) , J,(MIO, S)=O.

(A23)

The integrals .lT( Mln,;) may now be obtained from

J,(&fln,;) if b - B in J, is replaced everywhere by B and

the change of variable q’= – q is introduced in (50), (51).

Finally,

J,(~l~,;)=*J,(~l~,:; ~thb-BrePlaCedbYB)
(A24)

If the two remaining integrals J8 and Jg are written out

fully, it follows immediately

Jg(M@=J8(Mln>j;

that

with A – a replaced by A)

(A25)

Following the same procedure, we finally end up with

H i itf~d
—J@n-l,;Jg(”!n>j ‘T ~ b )

_(_l)”:[(-l)”~: (Y:;:)

( )1)

cos ny4
T w4n ;n =2,3,...

sin n y4

‘3= [( A-a)2+fb_B)2]1’2 ‘1

W4 =

[( A-a):+ B2]’,2<’

b–B

(1
.y3. tan-l —

A–a

B

()
74. tan-l — (-~<Y3,Y,<~)

A–a

(A26)

(A27)

Notice that now the recurrence formula relates J8( Mlrz, c)

and J8(Mln, s) to J8(Mln –l, s) and J8(kfln –l, c), re-

spectively. Again the functions y = tan – 1 (P/a) depend on

both the real variables a, ~, not just on their ratio. For

n = 1 and n = O, we also have

_l M~2d

[
‘8(”ll~:j=( i )~{(+% –~(A–a

1[+i(b– B)) –F. – $( A-a-iB) 1
T(–l)~FO

[
~(A-a-i(b-B))

1

+ FO
[

~(A-a+iB) 1}

[- G:l-w,(%l–2’77 +(–l)”w

(A28)

{[
J8(M10, c) =27r (–l)~FO – ~(A-a+i(b-B)) 1

[–F. – ~(A-a-iB) 1
+(–l)”Fo [~(A-a-i(b-B))]

– FO
[ 1}~(A-a+iB) ;

J8(M10,.s) = O. (A29)

All the integrals evaluated in this appendix have also been

checked to very high accuracy (five significant decimals)

by numerical integration. Furthermore, it is easy to verify

that the series over M in (52) converge exponentially with

M, unless the inner conductor is located very near the

shield boundary. In this latter case the expressions of

Appendix II may be used instead.

The last integral to be evaluated, P~#, is defined in (68).

From Fig. 2 and (62),

lnR(cf, @’) =lnr(~)- ~~l~(~)Ncos[~(T’’-~)l

. (cosNrp’’cosNti + sin Ncp’’sin No) (A30)

where ~, r are functions of q only. Therefore,

[

-37(:3 n=l, z,...
—— (A31)

2nlnr(9)(~), n=O.

For n = O we refer again to Fig. 2 and expand:

lnr(rf)=ln(2A-a)

—5;(+-JN (-l)~COSNq. (A32)
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Substituting (A36) and (A37) into (68), we get

~&q = 41*(2~ – a)~PC6,C

($, =lifp=q,8P, =0 if p # q) (A33)

(m=l,2,... ). (A34)

Forn=l,2,. . . we consider the integral

so that P~~ = Re P~. and P:: = – Im P;m. From Fig. 2,

re ‘“= 2A – a + de’q’ and (ret”)-” =1/(2A – a + ~e’p)”.

The change of variable eiq = { leads to

1
p:n=. —

+[

fm+(-m; p=~

27in I(1=1 –i({m–{-m); p=s 1

d{

“(’-’12A)

‘7
(m=l,2,... ) (A36)

d~
p{P=__

l$d( )

8a—2A n PC
(m= O).

Tin [q -1 ~{-y

(A37)

The pole at j’= (a – 2A)/d is exterior to the unit circle, as

seen from Fig. 2. Only the pole at { = O is inside. There-

fore.
7

p{nq = – E

()

d“
dpcsqc (A38)

n 2A–a)

while for m=l,2, . o“

2A–a ‘n-m

()

.—
d

Finally, for n, m =1,2, . . .

(-l)m

(

d

)( )

l?+n

p:; . . spc_ m+n–1 _
m 2A–a

(-l): d
~+~ (A39)

p;; = ~
(

m+n–1
ps n m )( )2A–a “

Observe that, although ( M‘: -l) increases with v and n,

d/(2A – a) < 1/2. Using Stirling’s formula [13, p. 257],

~!= JGxx+l/2exp(-x + d/12x) (X>o, o<e<l)

(A40)
we obtain, for large m, n,

‘p::’ < [27rmn(m Y; -1)]1/2 ‘

‘m.=(m::::)m(m+L-l)n ‘A4’)

It is easy to show that et~. <1. Without loss of generality,

we may assume m = n +s (s > 0) Then

S+l s–l
<–— —-=–1.

2 ‘2

Therefore, in tmn < – 1 or tmn <I/e. We made use of the

well-known inequalities [13, p. 68]
x

—<ln(l+x)<x
1+X

(x>-l, x#O) and ~,i<ln(l-x)<--x

(x<l, x#o).

For .s= 0,1 it is obvious that tmn <1. Therefore, lPg:l

varies at least proportionally to [mn ( m + n – 1)]- 1/2.

APPENDIX H

Based on the expansion (12) for G, the expression equiv-

alent to (52) for Kfij is

K~$ = – -&[ll(p, mlA, B).ll(- a- A, b- Bin, q)

–ll(p, mlA–a, B) J1(2a– A, b–Bln, q)

–I1(p, mlA, B–b)J1(– a- A,- Bin, q)

+ll(p, mlA–a, B–b)J1(2a –A, –Bln, q)]

{ ~~

(
ABd

12 p,mlkf;~,;,~

+T:’+ f ).

M=l
khb

()
MIT3 sinh —

a

.[-2nJ,(Mln, q)-ReJ,(Mln, q)

+Re.llo(Mln, q)+ ReJ1l(Mln, q)]

(

A B–b d
12 p,mlM; T,— --

)—
M~b

()

‘a–[-2~.13(Mln, q)

MT3 sinh —
a

–Re.J7(Mln, q)+ Re.112(Mln, q)

(

ABd
12 p,mliikl;z,~,~

+ReJ13(Mln, q)] – —
)

Mva -

()
Mm 3sinh —

b

.[2ml:(Mln,q)+R e.ll,(Mln,q)]

(
A–a B d

12 p, m~iM; ~ — --

+
)

‘ b ‘ b–[2rJ~(Mln, q)
Mva

()
MW3 sinh ————

b

1+ReJ15(Mln, q)] , (p, q=c, sor,s, c),

{
m.n=0.1.2 . . . . . (A42)
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The definitions and values of

pearing here are
the additional integrals ap-

){ [~~~ in (2A–2a

+dcoscp +dcos@)2+ (dsin~–dsinrp’)2]

+ln[(2A +dcosq+dcosrp’)2

,q[:(m+Y’)(2a:2A]m+nT“;=–~

(-l)m+n m+n_l d “n
+

n ( m )(-) 12A ‘

m,rz=l,2, ..- (A44)

n=l, z,... (A45)

m=l, z,... (A46)

T&4 = 48PC8,C[ln(2a –2A) +h(2A)] (A47)

~10(~ln,$)=+~6(~ln,f;a-– tz, A~A-2a,

H+-(H))

‘ll(~ln, j)=i J6(~l~, $;u+-~, b-~+ -(b-~))

J12(Mlnj ~)= J6(Mln, ~;a-–a$A~A–2a,

b–B~– B
)

J<(Mln,:)=J,[M,n, $; A~a+A)

where a ~ A means replacement of a by A. Finally, the

expression D( x, yln, ~) appearing in (53) for the potential

i (x, y), evaluated on the basis of (12) for G, takes the

form

~(x>Yln> :)= J1(x– A, Y– Bin,: )(
–J12a–x– A,

[1]

[2]

[3]

[4]

+(a–x)yJ1(2a –A, b–Bln, ~)

+(a–x)(b –y)J1(2a– A,– Bln

_ ~ sin(:]sinh(%)

M=l
Mvb

()
MT sinh —

a

[-2~J2(Ml~~)-ReJ,(Mln,f)

+ReJ1o(Mln, ~)+IkJl~(Mln, j)]

c
‘s )1

_ f ‘in(%si+%b+l
M=l Mrsinh/=\

_ ~ sin(?)~nh(y)

M=l M~a

H
Mw sinh —

b

_ ~ ‘in(%) sinh[Mn(~-x)l

M=l
Mrra

()
MT sinh —

b

-[2fiJ4’(w>:) +ReJ1,(Mln, ~)].

(A49)
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